haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

图形初步-思想方法归纳及典型例题(含答案解析)

发布时间:2014-01-18 17:10:07  

图形初步-思想方法归纳及典型例题

分类讨论,就是对问题所给对象的条件、结论、图形等不能进行统一研究时,就需要将研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.注意分类时要做到按同一标准且不重不漏.

例1 已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,求线段AC的长.

解:本题分两种情况:

如图4—4—9所示,当点C在线段AB的延长线上时,

AC=AB+BC=8+3=11(crn);

如图4—4—10所示,当点C在线段AB上时,

AC=AB-BC=8—3=5(cm).

所以线段AC的长为11 cm或5cm.

例2 经过任意三点中的两点共可以画出的直线条数是( )

A.1或3 B.3 C.2 D.1

解析:这道题要分两种情况考虑:一是这三点都在一条直线上时,就只能画出一条直线;二是这三点不在同一条直线上时,此时共可以画出三条直线. 答案:A

数形结合思想就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,可以使复杂问题简单化、抽象问题具体化,从而起到优化解题途径的目的,线段、直线、角的重要性质也都是通过数形结合的思想体现的.

例3 如图4—4—11所示放置的三角板,把三角板较长的直角边从水平状态开始,在平面上沿着直线BC滚动一周,求B点转动的角度.

解:三角板转动的路线如图4—4—12所示.由图可知第一次转动90°,第二次转动 120°,第三次没动,所以B点转动了210°.

点拨

解决本题的关键是明确角的变化情况,因此,可根据题意画出从起点到终点转动一圈的示意图,然后根据

B点转动的角度了.

解决一个问题,往往是由未知向已知转化,由陌生向熟悉转化,由复杂向简单转化,转化思想贯穿整个数学学习的始终.

例4 将下列选项中的平面图形绕直线l旋转一周,可以得到如图4—4—13所示立体图形的是(

)

解析:分析立体图形可知,直线l应为初始旋转的直角梯形垂直于两底的腰所在直线. 答案:B

点拨

本题主要考查了同学们识别图形的能力.对于类似的图形识别问题我们要能从所给立体图形入手,分析形成它的基本图形,把复杂的立体图形转化为平面图形去认识、解决.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com