haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

华师九年级28.1.2圆的对称性 教案

发布时间:2014-01-24 11:50:53  

28.1.2圆的对称性

教学目标:

使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。

重点难点:

1、重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系。

2、难点:运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题。 教学过程:

一、由问题引入新课:要同学们画两个等圆,并把其中一个圆剪下,让两个圆的圆心重合,使得其中一个圆绕着圆心旋转,可以发现,两个圆都是互相重合的。如果沿着任意一条直径所在的直线折叠,圆在这条直线两旁的部分会完全重合。

由以上实验,同学们发现圆是中心对称图形吗?对称中心是哪一点?圆不仅是中心对称圆形,而且还是轴对称图形,过圆心的每一条直线都是圆的对称轴。

二、新课

1、同一个圆中,相等的圆心角所对的弧相等、所对的弦相等。

垂直于弦的直径平分弦,并且平分弦所对的两条弧。

23.1.3 图

23.1.4

实验1、将图形23.1.3中的扇形AOB绕点O逆时针旋转某个角度,得到图23.1.4中的图形,同学们可以通过比较前后两个图形,发现?AOB??AOB,AB?AB,?AB??AB。

实质上,?AOB确定了扇形AOB的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。

问题:在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦是否相等呢? 在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧是否相等呢?

实验2、如图23.1.7,如果在图形纸片上任意画一条垂直

于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,比较AP与PB、AC与CB,你能发现什么结论?

显然,如果CD是直径,AB是⊙O中垂直于直径的弦,

︵︵图23.1.7

1

?,??。请同学们用一句话加以概括。 AC?BC那么AP?BP,?AD?BD

( 垂直于弦的直径平分弦,并且平分弦所对的两条弧)

2、同一个圆中,圆心角、弧、弦之间的关系的应用。(1)思考:如图,在一个半径为6米的圆形花坛里,准备种植六种不同颜色的花卉,要求每种花卉的种植面积相等,请你帮助设计种植方案。(2)如图23.1.5,在⊙O中,AC?BC,?1?45?,求?2的度数。

3、课堂练习 图 23.1.5

(1)如图,在⊙O中,AB=AC,∠B=70°.求∠C度数.

(第1题

) ︵︵

第5题

(第2题)

(2)如图,AB是直径,BC=CD=DE,∠BOC=40°,求∠AOE的度数

(3)已知,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。

三、课堂小结

本节课我们通过实验得到了圆不仅是中心对称图形,而且还是轴对称图形,而由圆的对称性又得出许多圆的许多性质,即(1)同一个圆中,相等的圆心角所对弧相等,所对的弦相等。(2)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。(4)垂直于弦的直径平分弦,并且平分弦所对的两条弧。

四、作业

习题

︵︵︵

2

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com