haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

一元二次方程单元综合测试题

发布时间:2014-01-24 12:52:31  

一元二次方程单元综合测试题

一、填空题(每题2分,共20分)

11.方程x(x-3)=5(x-3)的根是_______. 2

2.下列方程中,是关于x的一元二次方程的有________.

1(1)2y2+y-1=0;(2)x(2x-1)=2x2;(3)2-2x=1;(4)ax2+bx+c=0;(5)x

12x=0. 2

3.把方程(1-2x)(1+2x)=2x2-1化为一元二次方程的一般形式为________.

2114.如果2--8=0,则的值是________. xxx25.关于x的方程(m-1)x2+(m-1)x+2m-1=0是一元二次方程的条件是________.

6.关于x的一元二次方程x2-x-3m=0?有两个不相等的实数根,则m?的取值范围是定______________.

7.x2-5│x│+4=0的所有实数根的和是________.

8.方程x4-5x2+6=0,设y=x2,则原方程变形_________

原方程的根为________.

9.以-1为一根的一元二次方程可为_____________(写一个即可).

110.代数式x2+8x+5的最小值是_________. 2

二、选择题(每题3分,共18分)

11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有( ).

A.a=b=c B.一根为1 C.一根为-1 D.以上都不对

x2?x?612.若分式2的值为0,则x的值为( ). x?3x?2

A.3或-2 B.3 C.-2 D.-3或2

13.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为( ).

A.-5或1 B.1 C.5 D.5或-1

14.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为( ).

A.(x+2)(x+3) B.(x-2)(x-3)

C.(x-2)(x+3) D.(x+2)(x-3)

15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+

2β)的值为( ).

A.1 B.2 C.3 D.4

16.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,?则这个三角形的周长是( ).

A.8 B.8或10 C.10 D.8和10

- 1 -

三、用适当的方法解方程(每小题4分,共16分)

17.(1)2(x+2)2-8=0; (2)x(x-3)=x;

(3

x2=6x

(4)(x+3)2+3(x+3)-4=0.

四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)

18.如果x2-10x+y2-16y+89=0,求x的值. y

19.阅读下面的材料,回答问题:

解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:

设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4. 当y=1时,x2=1,∴x=±1;

当y=4时,x2=4,∴x=±2;

∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.

(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,?体现了数学的转化思想.

(2)解方程(x2+x)2-4(x2+x)-12=0.

- 2 -

20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.

(1) 填写统计表:

(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).

21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.

(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?

(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.

1122.设a,b,c是△ABC的三条边,关于x的方程x2x+c-a=0有两个22

相等的实数根,?方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状.

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

- 3 -

23.已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.

1 解:(1)根据题意,得△=(2a-1)2-4a2>0,解得a<. 4

∴当a<0时,方程有两个不相等的实数根.

2a?1 (2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-=0 a

①,

11 解得a=,经检验,a=是方程①的根. 22

1 ∴当a=时,方程的两个实数根x1与x2互为相反数. 2

上述解答过程是否有错误?如果有,请指出错误之处,并解答.

- 4 -

答案:

1.x1=3,x2=10

2.(5) 点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.

3.6x2-2=0

4.4 -2 点拨:把

5.m≠±1

6.m>-1看做一个整体. x1 点拨:理解定义是关键. 12

7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.

8.y2-5y+6=0 x1

,x2=

,x3

x4=

9.x2-x=0(答案不唯一)

10.-27

11.D 点拨:满足一元二次方程的条件是二次项系数不为0.

12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.

13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.

14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.

15.D 点拨:本题的关键是整体思想的运用.

16.C 点拨:?本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.

17.(1)整理得(x+2)2=4,

即(x+2)=±2,

∴x1=0,x2=-4

(2)x(x-3)-x=0,

x(x-3-1)=0,

x(x-4)=0,

∴x1=0,x2=4.

(3

2

-6x=0,

x2-

由求根公式得x1

x2

(4)设x+3=y,原式可变为y2+3y-4=0,

解得y1=-4,y2=1,

即x+3=-4,x=-7.

由x+3=1,得x=-2.

∴原方程的解为x1=-7,x2=-2.

18.由已知x2-10x+y2-16y+89=0,

得(x-5)2+(y-8)2=0,

∴x=5,y=8,∴x5=. y8

- 5 -

19.(1)换元 降次

(2)设x2+x=y,原方程可化为y2-4y-12=0,

解得y1=6,y2=-2.

由x2+x=6,得x1=-3,x2=2.

由x2+x=-2,得方程x2+x+2=0,

b2-4ac=1-4×2=-7<0,此时方程无解.

所以原方程的解为x1=-3,x2=2.

20

(2)设2001年至2003年平均每年增长率为x,

则2001年用电量为14.73亿kW·h,

2002年为14.73(1+x)亿kW·h,

2003年为14.73(1+x)2亿kW·h.

则可列方程:14.73(1+x)2=21.92,1+x=±1.22,

∴x1=0.22=22%,x2=-2.22(舍去).

则2001~2003年年平均增长率的百分率为22%.

21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,

解得x1=0,x2=25,

当x=0时,能卖出30件;

当x=25时,能卖出80件.

根据题意,x=25时能卖出80件,符合题意.

故每件衬衫应降价25元.

(2)设商场每天盈利为W元.

W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.

121x-a=0有两个相等的实数根, 22

11 ∴判别式=)2-4×(c-a)=0, 2222.∵

整理得a+b-2c=0 ①,

又∵3cx+2b=2a的根为x=0,

∴a=b ②.

把②代入①得a=c,

∴a=b=c,∴△ABC为等边三角形.

(2)a,b是方程x2+mx-3m=0的两个根,

所以m2-4×(-3m)=0,即m2+12m=0,

∴m1=0,m2=-12.

当m=0时,原方程的解为x=0(不符合题意,舍去),

∴m=12.

23.上述解答有错误.

(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,

- 6 -

∴a2≠0且满足(2a-1)2-4a2>0,∴a<

(2)a不可能等于1且a≠0. 41. 2

1且a≠0, 4∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<

而a=11>(不符合题意) 24

所以不存在这样的a值,使方程的两个实数根互为相反数. - 7 -

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com