haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

九年级数学《6.4二次函数的运用(4)》学案

发布时间:2014-02-11 11:59:49  

6.4 二次函数的运用(4)【拱桥问题】

学习目标:

1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。

2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。 学习重点:应用二次函数最值解决实际问题中的最大利润。

学习难点:能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变量的取值范围对最值的影响。

学习过程:

一、知识准备:

1、如图所示的抛物线的解析式可设为 ,若AB∥x轴,且AB=4,

OC=1,则点A的坐标为 ,点B的坐标为 ;代入解析式

可得出此抛物线的解析式为 。

2、 某涵洞是抛物线形,它的截面如图所示。现测得水面宽AB=4m,涵洞顶

点O到水面的距离为1m,于是你可推断点A的坐标是 ,点B的坐标

为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析

式可设为 。

二、学习内容:

例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。

例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?

例3、平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米处,绳甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,请你算一算学生丁的身高。

三、达标测试:

1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=?水位线在AB位置时,水面宽 AB = 30米,这时水面离桥顶的高度h是( ) A、5米 B、6米; C、8米; D、9米

2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m后,水面的宽度是多少?(结果精确到0.1m).

3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,涵洞宽ED是多少?是否会超过1 m?

12

x,当25

4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.

5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用 表示.

(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?

(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com