haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

圆的考点

发布时间:2014-02-11 14:01:42  

M1:圆的认识描述: (1)圆的定义

定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.

定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.

(2)与圆有关的概念

弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.

连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.

(3)圆的基本性质:①轴对称性.②中心对称性.

M2:垂径定理描述: (1)垂径定理

平分弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)垂径定理的推论

推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.

推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

M3:垂径定理的应用描述: 垂径定理的应用很广泛,常见的有:

(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.

这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.

M4:圆心角、弧、弦的关系描述: (1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.

说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.

(3)正确理解和使用圆心角、弧、弦三者的关系

三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.

(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.

M5:圆周角定理描述: (1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.

注意:圆周角必须满足两个条件:①定点在圆上.②角的两条边都与圆相交,二者缺一不可. 1

(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.

(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”---圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.

M6:圆内接四边形的性质描述: (1)圆内接四边形的性质:

①圆内接四边形的对角互补.

②圆内接四边形的对边和相等.

(2)圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.

M7:相交弦定理描述: (1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).

几何语言:若弦AB、CD交于点P,则PA?PB=PC?PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 几何语言:若AB是直径,CD垂直AB于点P,则PC2=PA?PB(相交弦定理推论).

M8:点与圆的位置关系描述: (1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:

①点P在圆外?d>r

②点P在圆上?d=r

①点P在圆内?d<r

(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.

(3)符号“?”读作“等价于”,它表示从符号“?”的左端可以得到右端,从右端也可以得到左端.

M9:确定圆的条件描述: 不在同一直线上的三点确定一个圆.

注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.

2

MA:三角形的外接圆与外心描述: (1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.

(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.

(3)概念说明:

①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.

②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.

③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.

MB:直线与圆的位置关系描述: (1)直线和圆的三种位置关系:

①相离:一条直线和圆没有公共点.

②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.

③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.

(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d. ①直线l和⊙O相交?d<r

②直线l和⊙O相切?d=r

③直线l和⊙O相离?d>r.

MC:切线的性质描述: (1)切线的性质

①圆的切线垂直于经过切点的半径.

②经过圆心且垂直于切线的直线必经过切点.

③经过切点且垂直于切线的直线必经过圆心.

(2)切线的性质可总结如下:

如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.

(3)切线性质的运用

由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.

MD:切线的判定描述: (1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.

(2)在应用判定定理时注意:

①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线. ②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.

③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半 3

径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.

ME:切线的判定与性质描述: (1)切线的性质

①圆的切线垂直于经过切点的半径.

②经过圆心且垂直于切线的直线必经过切点.

③经过切点且垂直于切线的直线必经过圆心.

(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.

(3)常见的辅助线的:

①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;

②有切线时,常常“遇到切点连圆心得半径”.

MF:弦切角定理描述: (1)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.

(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.

如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,则有∠PCA=∠PBC(∠PCA为弦切角).

MG:切线长定理描述: (1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.

(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.

(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

(4)切线长定理包含着一些隐含结论:

①垂直关系三处;

②全等关系三对;

③弧相等关系两对,在一些证明求解问题中经常用到.

MH:切割线定理描述: (1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

几何语言:

∵PT切⊙O于点T,PBA是⊙O的割线

∴PT的平方=PA?PB(切割线定理)

(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积 4

相等.

几何语言:

∵PBA,PDC是⊙O的割线

∴PD?PC=PA?PB(切割线定理推论)(割线定理)

由上可知:PT2=PA?PB=PC?PD.

MI:三角形的内切圆与内心描述: (1)内切圆的有关概念:

与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.

(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.

(3)三角形内心的性质:

三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.

MJ:圆与圆的位置关系描述: (1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.

如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.

(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离?d>R+r; ②两圆外切?d=R+r;

③两圆相交?R-r<d<R+r(R≥r);

④两圆内切?d=R-r(R>r);

⑤两圆内含?d<R-r(R>r).

MK:相切两圆的性质描述: 相切两圆的性质:如果两圆相切,那么连心线必经过切点. 这说明两圆的圆心和切点三点共线,为证明带来了很大方便.

ML:相交两圆的性质描述: (1)相交两圆的性质:

相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.

注意:在习题中常常通过公共弦在两圆之间建立联系.

(2)两圆的公切线性质:

两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.

两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.

MM:正多边形和圆描述: (1)正多边形与圆的关系

把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.

5

(2)正多边形的有关概念

①中心:正多边形的外接圆的圆心叫做正多边形的中心.

②正多边形的半径:外接圆的半径叫做正多边形的半径.

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.

MN:弧长的计算描述: (1)圆周长公式:C=2πR

(2)弧长公式:l=nπR180(弧长为l,圆心角度数为n,圆的半径为R)

①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位. ②若圆心角的单位不全是度,则需要先化为度后再计算弧长.

③题设未标明精确度的,可以将弧长用π表示.

④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.

MO:扇形面积的计算描述: (1)圆面积公式:S=π

(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.

(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则

S扇形=nπR2360或S扇形=12lR(其中l为扇形的弧长)

(4)求阴影面积常用的方法:

①直接用公式法;

②和差法;

③割补法.

(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.

MP:圆锥的计算描述: (1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.

(2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

(3)圆锥的侧面积:S侧=12?2πr?l=πrl

(4)圆锥的全面积:S全=S底+S侧=πr2+πrl

(5)圆锥的体积=13×底面积×高

注意:①圆锥的母线与展开后所得扇形的半径相等.

②圆锥的底面周长与展开后所得扇形的弧长相等.

MQ:圆柱的计算描述: (1)圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长.

(2)圆柱的侧面积=底面圆的周长×高

(3)圆柱的表面积=上下底面面积+侧面积

(4)圆柱的体积=底面积×高.

6

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com