haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

初中圆的切线判定和性质练习

发布时间:2014-03-01 19:17:35  

圆的切线判定及性质专题训练

一、选择题

1.下列命题正确的是( )

A. 经过半径外端的直线是圆的切线

B. 直线和圆有公共点,则直线和圆相交

C. 过圆上一点有且只有一条圆的切线

D. 圆的切线垂直于半径

2.如图,PA切⊙O于点A,若∠APO=30°,OP=2,则⊙O半径是( )

A. B. 1 C. 2 D. 4

3.如图,AB、AC分别与⊙O相切于B、C,∠A=50°,点P是圆上异于B,C的动点,则∠BPC的度数是( )

A. 65° B. 115° C. 65°和115° D. 130°和150°

4.如图,CD切⊙O于B,CO的延长线交⊙O于A,若∠C=36°,则∠ABD的度数是( )

A. 72° B. 63° C. 54° D. 36°

5.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以BC上一点O为圆心作⊙O与AB相切于E,与AC相切于

C,又⊙O与BC的另一交点为D,则线段BD的长为( )

A. 1

B.

C.

D.

二、填空题

6.如图,AB是⊙O的弦,AC切⊙O于点A,且∠BAC=45°,AB=2,则⊙O的面积为_____。

7. 如图,已知AB是⊙O的直径,延长AB到D,使BD=OB,DC切⊙O于C,则∠D=____,∠C=_____,若⊙O的

半径为R,则AC=_____。

8. 如图,AB,AD,CD分别切⊙O于B,E,C,且AB∥CD,则△AOD的形状是____三角形。

9. 如图,AB是圆的直径,MN切圆于P,AM⊥MN于M,BN⊥MN于N,如果AM=5,BN=3,那么⊙O的半径

为____。

10. 如图,半径为3cm的⊙O切直线AC于B,AB=3cm,

度数是_______。 ,则∠AOC的

三、解答题

11.如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为

OE交BC于F,DE交AC于G,∠ADG=∠AGD,求证:AD是⊙O的切线。 的中点,

12.如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,PA是⊙O的切线,A为切点,割线PBD过圆心,交⊙O于另一点D,连结CD。

(1)求证:PA∥BC;(2)求⊙O半径及CD的长。

13. 如图,BC与⊙O相切于点B,AB为⊙O直径,弦AD∥OC,求证:CD是⊙O的切线。

14.如图,已知:在Rt△ABC中,∠B=90°,AC=13,AB=5,O是AB上的点,以O为圆心,OB为半径作⊙O。

(1)当OB=2.5时,⊙O交AC于点D,求CD的长。

(2)当OB=2.4时,AC与⊙O的位置关系如何?试证明你的结论。

15.如图,AB是⊙O的直径,DF切⊙O于D,BF⊥DF于F,过点A作AC∥BF交BD的延长线于点C.

(1)求证:∠ABC=∠C;

(2)设CA的延长线交⊙O于E,BF交⊙O于G,若

点D和点E关于直线AB对

称的理由. 的度数等于60°,试简要说明

参考答案:

1.C 2.B 3.C 4.B 5.C

6.

7. 30°,120°, 8. 直角 9. 4 提示:连结OP 10. 75° 提示:连结OB 11. 证明提示:连结OD,有OD=OE,∠OED=∠ODE,

,有∠OED+∠EGF=90°,又∠EGF=∠

根据垂径定理,

AGD=∠ADG,

所以∠ODE+∠ADG=90°,所以AD是⊙O切线。

12.(1)提示:连结OA

(2)R=16.9 CD=23.8

13. 证明:连结OD

∵OD=OA,∴∠A=∠ADO

∵AD∥OC,∴∠A=∠BOC,∠ADO=∠DOC,

∴∠DOC =∠BOC,又OC=OC,OD=OB

∴△DOC≌△BOC

∴∠ODC=∠OBC=90°

∴CD是⊙O的切线。

14. (1)

(2)AC与⊙O相切

15. (1)提示:连结OD,有AC∥BF∥OD,∠C=∠BDO,又OD=OB,有∠ABC=∠BDO,所以∠ABC=∠C。

(2)略。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com