haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

全等三角辅助线

发布时间:2014-03-12 19:03:16  

(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用

2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。

证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,

∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,

∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,

∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。

2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程:

证明:延长AD到E,使DE=AD,连接BE。

又因为AD是BC边上的中线,∴BD=DC

又∠BDE=∠CDA

ΔBED≌ΔCAD,

故EB=AC,∠E=∠2,

∵AD是∠BAC的平分线

∴∠1=∠2,

∴∠1=∠E,

∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。

解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。

思路分析:1)题意分析:本题考查角平分线定理的应用。

2)解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。

解答过程:

证明:作CE⊥AB于E,CF⊥AD于F。

∵AC平分∠BAD,

∴CE=CF。

在Rt△CBE和Rt△CDF中,

∵CE=CF,CB=CD,

∴Rt△CBE≌Rt△CDF,

∴∠B=∠CDF,

∵∠CDF+∠ADC=180°,

∴∠B+∠ADC=180°。

(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF。

求证:DE=DF。

思路分析:1)题意分析: 作平行线。

2)解题思路:因为DE、DF所在的两个三角形ΔDEB与ΔDFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。

解答过程:

证明:过E作EG//AC交BC于G,

则∠EGB=∠ACB,

又AB=AC,∴∠B=∠ACB,

∴∠B=∠EGB,∴∠EGD=∠DCF,

∴EB=EG=CF,

∵∠EDB=∠CDF,∴ΔDGE≌ΔDCF,

∴DE=DF。

(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 例6:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。 求证:CD=AD+BC。

分析:1)题意分析: 截长法或补短法。思路

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:

证明:在CD上截取CF=BC,如图乙

∴△FCE≌△BCE(SAS),

∴∠2=∠1。

又∵AD∥BC,

∴∠ADC+∠BCD=180°,

∴∠DCE+∠CDE=90°,

∴∠2+∠3=90°,∠1+∠4=90°,

∴∠3=∠4。

在△FDE与△ADE中,

∴△FDE≌△ADE(ASA),

∴DF=DA,

∵CD=DF+CF,

∴CD=AD+BC。

1、已知,如图1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。 求证:∠BAD+∠BCD=180°。

2、已知,如图2,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD。 求证:∠BAP+∠BCP=180°。

3、已知,如图3,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com