haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

中考数学重难点专题:动态几何与函数问题

发布时间:2014-04-03 13:03:00  

中考数学重难点专题讲座

动态几何与函数问题

【例1】

如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.

(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积.

(2)当2?t?4时,求S关于t的函数解析式

.

【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二的函数图像没有数学感觉,反应不上来那个M点是何含义,于是无从下手。其实M点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当2?t?4时,阴影部分面积就是整个梯形面积减去△ODE的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。

【解】

(1)由图(2)知,M点的坐标是(2,8)

OA?4; ∴由此判断:AB?2,

∵N点的横坐标是4,NQ是平行于x轴的射线,

1

∴CO?4

∴直角梯形OABC的面积为:

(2)当2?t?4时,

阴影部分的面积=直角梯形OABC的面积??ODE的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) 1∴S?12?OD?OE 211?AB?OC??OA??2?4??4?12..... (3分) 22

∵OD1?,OD?4?t OE2

∴OE?2?4?t? . 12∴S?12??2?4?t???4?t??12??4?t? 2

S??t2?8t?4.

【例2】

已知:在矩形AOBC中,OB?4,OA?3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数y?k(k?0)的图象与AC边交于点E. x

(1)求证:△AOE与△BOF的面积相等;

(2)记S?S△OEF?S△ECF,求当k为何值时,S有最大值,最大值为多少?

(3)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点F的坐标;若不存在,请说明理由.

【思路分析】本题看似几何问题,但是实际上△AOE和△FOB这两个直角三角形的底

2

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com