haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

二元一次方程组的应用(2)

发布时间:2014-04-30 13:40:59  

二元一次方程组的应用专项练习(2)

一;典例1、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?

解:设到甲工厂的人数为x人,到乙工厂的人数为y人

题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数 可列方程为:x-9=

2、抽5人后到甲工厂的人数= 可列方程为:

例2、小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小? 解;设共买x枚10分邮票,y枚20分邮票

题中的两个相等关系: 1、10分邮票的枚数+20分邮票的枚数=总枚数。可列方程为: 2、10分邮票的总价+ =全部邮票的总价。可列方程为:10X+ =

例3、小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?题中的两个相等关系

1、做4个小狗的时间+ =3时42分。可列方程为:

2、 +做6个小汽车的时间=3时37分。可列方程为: 例4、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少? 解:设甲每小时走x千米,乙每小时走y千米

题中的两个相等关系:

1、同向而行:甲的路程=乙的路程+ 可列方程为:

2、相向而行:甲的路程+ = 可列方程为:

例5、某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友? 解:设幼儿园有x个小朋友,萍果有y个

题中的两个相等关系:1、萍果总数=每人分3个+ 可列方程为:

2、萍果总数= 可列方程为:

例6、需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克?解:设每千克售4.2元的糖果为x千克,每千克售3.4元的糖果为y千克? 题中的两个相等关系 :

1、每千克售4.2元的糖果销售总价+ = 可列方程为:

2、每千克售4.2元的糖果重量+ = 可列方程为: 例7、如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少? 解:设小长方形的长是x厘米,宽是y厘米

题中的两个相等关系 :

1、小长方形的长+ =大长方形的宽

可列方程为:

2、小长方形的长=

可列方程为:

例8、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?

解:设有

题中的两个相等关系 :1、制作桌面的木材+ = 可列方程为:

2、所有桌面的总数:所有桌脚的总数= 可列方程为: 例9、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?

解:设个位数字为x,十位数字为y。 题中的两个相等关系:

1

1、个位数字= -5。 可列方程为:

2、新两位数= 。可列方程为:

9、一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货

的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好

运完这批货物,问这批货物有多少吨?

解:设 题中的两个相等关系:

1、第一次:甲货车运的货物重量+ =36

可列方程为:

2、第二次:甲货车运的货物重量+ =26 可列方程为:

巩固提高练习;1、某检测站要在规定时间内检测一批仪器,原计划每天检测30台这种仪器,则在规定时间内只能检测完总数的七分之三;现在每天实际检测40台,结果不但比原计划提前了一天完成任务,还可以多检测25台.问规定时间是多少天?这批仪器共多少台?

2、游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?

3、甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?

4、两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.

2

5、某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.

6、某车间原计划30天生产零件165个。在前8天,共生产出52个零件,由于工期调整,要求提前5天超额完成任务,问以后平均每天至少要生产多少个零件?

7、某家庭前年结余5000元,去年结余9500元,已知去年的收入比前年增加了15%,而支出比前年减少了10%,这个家庭去年的收入和支出各是多少?

8、某同学在A、B两购物中心发现他看中的运动服的单价相同,球鞋的单价也相同,运动服和球鞋的单价之和为452元,且运动服的单价比球鞋的单价的4倍少8元.

(1)求该同学看中的运动服和球鞋的单价各是多少元?

(2)某一天,该同学上街,恰好赶上商家促销,A所有的商品打八折销售,B全场每购物满100元返购物券30元销售(不足100元不返券,购物券全场通用,只限于购物),他只带了400元钱.如果他只在一家购物中心购买这两种物品,你能说明他可以选择哪一家购买更省钱吗?还有哪些购买方式?哪种方式更划算?

3

9、某公司为了扩大经营,决定购进6台机器用于生产某种活塞。现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。经过预算,本次购买机器所耗资金不能超过34万元。

(2) 若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?

10、.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG” 改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的二十分之三,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的五分之二.问:

(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?

(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?

11.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;

方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.

你认为哪种方案获利最多?为什么?

4

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com