haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

初三圆的最值问题复习

发布时间:2014-05-16 13:48:21  

引例1:【2012年武汉市中考】在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一 象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.

引例2:【2013年武汉市元月调考试题】如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆 心OA长为半径作⊙O,CAB上的一个动点 (不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求ab.

引例3:【2013年武汉市四月调考试题】如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O 上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).

3

A.3 B.6 C.2 D.3

一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点

D、E与一个定点A构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com