haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

一元一次不等式(组)应用分类训练

发布时间:2014-06-28 15:08:38  

一元一次不等式(组)解应用题分类练习

【识别不等式(组)类应用题的几个标志】

1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.

例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过每月总电量的百分之几时,使用“峰谷”电合算? ...

解:设当“峰电”用量占每月总用电量的百分率为x时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y. 解得x<89℅ 答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.

2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.

例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.

⑴直接写出甲、乙两组行进速度之比;

⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远? ⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).

解:⑴甲、乙两组行进速度之比为3:2.

⑵设山腰离山顶的路程为x千米,依题意得方程为x3?,解得x=3.6(千米). 经检验x=3.6是x?1.22

所列方程的解, 答:山脚离山顶的路程为3.6千米.

⑶可提问题:“问B处离山顶的路程小于多少千米?”再解答如下: 设B处离山顶的路程为m千米(m>0) 甲、乙两组速度分别为3k千米/时,2k千米/时(k>0) ;依题意得

答:B处离山顶的路程小于0.72千米.

【下列情况列一元一次不等式组解应用题】

1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.

例3.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.

(1)求y(元)与x(套)的关系式,并求出x的取值范围;

(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?

m1.2?m<,解得m<0.72(千米). 3k2k分析:本题存在的两个不等量关系是:①合计生产M、N型号的服装所需A种布料不大于70米;②合计生产M、N1

型号的服装所需B种布料不大于52米.

解:(1)y?45?80?x??50x,即y?5x?3600.依题意得??0.6(80?x)?1.1x?70; 0.9(80?x)?0.4x?52.?

解之,得40≤x≤44. ∵x为整数,∴自变量x的取值范围是40,41,42,43,44. (2)略

2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.

例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足本.设该校买了m本课外读物,有x名学生获奖.请回答下列问题: ..3..

(1)用含x的代数式表示m;

(2)求出该校的获奖人数及所买课外读物的本数.

解:(1)m=3x+8 (2)由题意,得??3x?8?5(x?1)?013 ∴不等式组的解集是:5<x≤ 2?3x?8?5(x?1)?3.

∵x为正整数,∴x=6. 把x=6代入m=3x+8,得m=26.答:略

例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?

解:设从甲地到乙地的路程大约是x公里,依题意,得:10+5×1.2<10+1.2(x-5)≤17.2 解得10<x≤11

答:从甲地到乙地的路程大于10公里,小于或等于11公里.

【用一元一次不等式组解决实际问题的步骤:】⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。

【分配问题】

1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人?

【积分问题】

1、某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格?

2、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?

2

3、有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?

【比较问题】

1、某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?

2、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社?

【行程问题】

1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?

2、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?

3、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?

4、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?

3

【车费问题】

1、出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价

1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km?

2、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需要7元车费),超过3km,每增加1km,加收2.4元(不足1km按1km计)。某人乘这种出租车从A地到B地共支付车费19元。设此人从A地到B地经过的路程最多是多少km?

【工程问题】

1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?

2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?

3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?

【浓度问题】

4

1、在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?

2、一种灭虫药粉30千克,含药率是15%,现在要用含药率比较高的同种药粉50千克和它混合,使混合的含药率大于20%,求所用药粉的含药率的范围。

【增减问题】

1、几个同学合影,每人交0.70元,一张底片0.68元,扩印一张相片0.5元,每人分一张,将收来的钱尽量用完,这张照片上的同学至少有多少个?

2、某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足10㎝?

【销售问题】

1 、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。

(1)试求该商品的进价和第一次的售价;

(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?

2.水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?

3.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。问刻录这批电脑光盘,该校如何选择,才能使费用较少?

【数字问题】

有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数

5

【方案选择与设计】

1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格

超过72元,

(1)设需用x千克甲种原料,写出x应满足的不等式组。

(2)按上述的条件购买甲种原料应在什么范围之内?

2.红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少?此时每月工资为多少元?

4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问: (1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?

(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。

5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该

园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票。

(1) 如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通

过计算,找出可使进入该园林的次数最多的购票方式。

(2) 求一年中进入该园林至少多少时,购买A类年票才比较合算。

6

7

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com