haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

反比例函数单元测试卷(含答案)

发布时间:2014-07-09 11:59:56  

《反比例函数》单元测试卷

一、选择题

1、函数y?

k

x

的图象经过点A(1,?2),则k的值为( ) A.1

2

B.?12 C.2 D.?2

2、已知反比例函数y?2

x

,下列结论中,不正确...

的是( ) A.图象必经过点(1,2)

B.y随x的增大而减少

C.图象在第一、三象限内 D.若x?1,则y?2

3、用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P?I2

R,下面说法正确的是( )

A.P为定值,I与R成反比例 B.P为定值,I2与R成反比例 C.P为定值,I与R成正比例

D.P为定值,I2

与R成正比例

4、如图,某反比例函数的图像过点M(?2,1),则此反比例函数表达式为(A.y?

2

x B.y??21

x C.y?2x

D.y??

1

2x

5、若反比例函数y?k

x

的图象经过点(m,3m),其中m?0,则此反比例函数的图 象在( )

A.第一、二象限;B.第一、三象限 ;C.第二、四象限; D.第三、四象限

6、已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是( )

A. B. C. D .

7、如图,一次函数y2

1?x?1与反比例函数y2?x

的图像交于点A(2,

1),B(?1,?2),则使y1?y2 的x的取值范围是( )

1/3

A.x?2 B.x?2或?1?x?0 C.?1?x?2 D.x?2或x??1

8、已知k1?0?k2,则函数y?kk2

1x和y?

x

的图象大致是( ) x

x

x

x

D.

9、已知函数y??x?5,y?

4

x

,它们的共同点是:①在每一个象限内,都是函数y随x的增大而 增大;②都有部分图象在第一象限;③都经过点(1,4),其中错误..

的有( ) A.0个

B.1个

C.2个

D.3个

10、平面直角坐标系中有六个点A(1,5),B??

?3,?5???5??5??5??3?,C(?5,?1),D???22??,E??33??,F??22??

其中有五个点在同一反比例函数图象上,不在这个反比例函数图象上的点是( )

A.点C B.点D C.点E D.点F

二、填空题

11、已知广州市的土地总面积约为7 434 km2,人均占有的土地面积S(单位:km2/人)随全市人口

n (单位:人)的变化而变化,则S与n的函数关系式为_ __.

12、一个反比例函数的图象经过点P(?15),,则这个函数的表达式是 . 13、反比例函数y?

k

x

的图象经过点(-2,1),则k的值为14、已知反比例函数的图象经过点(m,2)和(?2,3),则m的值为 .

15、在平面直角坐标系xoy中,直线y?x向上平移1个单位长度得到直线l.直线l与反比例函数

y?

k

x

的图象的一个交点为A(a,2),则k的值等于 16、蓄电池电压为定值,使用此电源时,电流I(安)与电阻R(欧)之间关系的图象如图所示,若点P在图象上,则I与R(R>0)的函数关系式是______________. 17、一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个

象限内,函数值y随自变量x的增大而增大.则这个函数的解析式可以为 . 18、如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数 y?

1

x

(x?0)的图象上,则点E

的坐标是( , )

.

三、解答题

19、已知一次函数y?x?3的图象与反比例函数y?

k

x

的图象都经过点A(a,4). (1)求a和k的值;(4分)(2

)判断点B是否在该反比例函数的图象上?(4分)

20、已知点A(2,6)、B(3,4)在某个反比例函数的图象上. (1) 求此反比例函数的解析式;(2)若直线y?mx与线段AB相交,求m的取值范围.

21、已知正比例函数y?kx的图象与反比例函数y?5?k

x

(k为常数,k?0)的图象有一个交点的横坐标是2.

(1)求两个函数图象的交点坐标;

(2)若点A(x1,y1),B(x2,y2)是反比例函数y?5?k

x

图象上的两点,且x1?x2,试比较y1,y2的大小.

2/3

22、某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一

套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.

(1)有多少种生产方案?

(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用?生产成本?运费)

(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.

参考答案

一、选择题

1、D 2、B 3、B 4、B 5、B 6、D 7、B 8、D 9、B 10、B 二、填空题

11、 12、y??5

S?7434 13、-2 14、?3

n

x15、2 16、I?36R 17、y=-1?15?1x 18、(2,2

) 三、计算题 19、解:(1)

一次函数y?x?3的图象过点A(a,4),

?a?3?4,a?1.

反比例函数y?k

x

的图象过点A(1,4),

?k?4.

(2

)解法一:当x?

y?

?,

??

点B不在y?4

x

的图象上. 解法二:

点B在第四象限,

而反比例函数y?

4

x

的图象在一、三象限. ?

点B不在y?4

x的图象上. 8分

20、解:(1)设所求的反比例函数为y?k

x

依题意得: 6 =k

2

∴k=12.

∴反比例函数为y?

12x

. (2) 设P(x,y)是线段AB上任一点,则有2≤x≤3,4≤y≤6. ∵m =

yx , ∴46

3≤m≤2

所以m的取值范围是

4

3

≤m≤3. (8分) 21、解:(1)由题意,得2k?5?k

2

, 1分

解得k?1.

所以正比例函数的表达式为y?x,反比例函数的表达式为y?4

x

. 解x?

4

x

,得x??2.由y?x,得y??2.

所以两函数图象交点的坐标为(2,2),(?2,2)?.

(2)因为反比例函数y?

4

x

的图象分别在第一、三象限内, y的值随x值的增大而减小,

所以当x1?x2?0时,y1?y2. 当0?x1?x2时,y1?y2.

当x1?0?x2时,因为y1?

4

x?0,y?42x?0,所以y1?y2.

1

222、解:(1)设生产A型桌椅x套,则生产B型桌椅(500?x)套,由题意得

??

0.5x?0.7?(500?x)≤302

?

2x?3?(500?x)≥1250 解得240≤x≤250

因为x是整数,所以有11种生产方案.

(2)y?(100?2)x?(120?4)?(500?x)??22x?62000

?22?0,y随x的增大而减少.

?当x?250时,y有最小值.

?当生产A型桌椅250套、B型桌椅250套时,总费用最少.

此时ymin??22?250?62000?56500(元)

(3)有剩余木料,最多还可以解决8名同学的桌椅问题. (10分)

3/3

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com