haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

二元一次方程组练习题

发布时间:2013-10-08 10:34:24  

内部资料,谢绝外泄 思迈教育:倪帅

二元一次方程组

一、选择题:(每题3分,共24分)

1.下列方程中,是二元一次方程的是( )

A.3x-2y=4z B.6xy+9=0 C.1y?2+4y=6 D.4x= x4

?x2?9C.??y?2x?x?y?8D.?2 ?x?y?42.下列方程组中,是二元一次方程组的是( ) ?x?y?4 A.??2x?3y?7?2a?3b?11B.??5b?4c?6

3.二元一次方程5a-11b=21 ( )

A.有且只有一解 B.有无数解 C.无解 D.有且只有两解

4.方程y=1-x与3x+2y=5的公共解是( )

A.??x?3

?y?2?x??3B.??y?4?x?3C.??y??2?x??3D.? ?y??2

5.若│x-2│+(3y+2)2=0,则的值是( )

A.-1 B.-2 C.-3 D.3 2

?4x?3y?k6.方程组?的解与x与y的值相等,则k等于( ) 2x?3y?5?

7.下列各式,属于二元一次方程的个数有( )

①xy+2x-y=7; ②4x+1=x-y; ③

⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x

A.1 B.2 C.3 D.4

8.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,?则下面所列的

方程组中符合题意的有( )

A.?1+y=5; ④x=y; ⑤x2-y2=2 x?x?y?246

?2y?x?2?x?y?246B.??2x?y?2?x?y?216C.??y?2x?2?x?y?246D.? ?2y?x?2

二、填空题(每题3分,共24分)

9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x

为:x=________.

10.在二元一次方程-

--11.若x3m3-2yn1=5是二元一次方程,则m=_____,n=______. 1x+3y=2中,当x=4时,y=_______;当y=-1时,x=______. 2

?x??2,12.已知?是方程x-ky=1的解,那么k=_______. y?3?

- 1 -

内部资料,谢绝外泄 思迈教育:倪帅

13.已知│x-1│+(2y+1)=0,且2x-ky=4,则k=_____.

14.二元一次方程x+y=5的正整数解有______________.

15.以??x?5为解的一个二元一次方程是_________. y?7?

?x?2?mx?y?3是方程组?的解,则m=_______,n=______.

?y??1?x?ny?616.已知?

三、解答题(17-23题,每题6分,24题10分)

17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)?有相同

的解,求a的值.

18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?

?4x?3y?719.二元一次方程组?的解x,y的值相等,求k. kx?(k?1)y?3?

20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?

21.根据题意列出方程组:

(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,?问明明两种邮票各买了多少枚?

(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;?若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?

- 2 -

内部资料,谢绝外泄 思迈教育:倪帅

22.方程组??x?y?25的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方

?2x?y?8

?x?y?25程组?的解? 2x?y?8?

23.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,

你能找到几个m的值?你能求出相应的x的解吗?

24. 某地生产的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨.该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕.为此,公司研制了三种加工方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成. 你认为选择哪种方案获利最多?为什么?

- 3 -

内部资料,谢绝外泄 思迈教育:倪帅

答案:

一、选择题

1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数

的项的次数是1;③等式两边都是整式.

2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项

次数为1;③每个方程都是整式方程.

3.B 解析:不加限制条件时,一个二元一次方程有无数个解.

4.C 解析:用排除法,逐个代入验证.

5.C 解析:利用非负数的性质.

6.B

7.C 解析:根据二元一次方程的定义来判定,?含有两个未知数且未知数的次数不超过

1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.

8.B

二、填空题

4?2x4?3y4 10. -10 332

4411.,2 解析:令3m-3=1,n-1=1,∴m=,n=2. 33

?x??2,12.-1 解析:把?代入方程x-ky=1中,得-2-3k=1,∴k=-1.

?y?39.

13.4 解析:由已知得x-1=0,2y+1=0,

?x?111?∴x=1,y=-,把?1代入方程2x-ky=4中,2+k=4,∴k=1. 22y????2

?x?1?x?2?x?3?x?414.解:? ???y?4y?3y?2y?1????

解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,

∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;

当x=3,y=2;当x=4时,y=1.

?x?1∴x+y=5的正整数解为??y?4?x?2??y?3?x?3??y?2?x?4 ?y?1?

15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,

此题答案不唯一.

16.1 4 解析:将??x?2?mx?y?3代入方程组?中进行求解.

?y??1?x?ny?6

三、解答题

17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,

- 4 -

内部资料,谢绝外泄 思迈教育:倪帅

∵方程3x+5y=?-?3?和3x-2ax=a+2有相同的解,

∴3×(-3)-2a×4=a+2,∴a=-11. 9

18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,

∴a-2≠0,b+1≠0,?∴a≠2,b≠-1

解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.

(?若系数为0,则该项就是0)

19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,

∴x=1,y=1.将x=1,y=?1?代入kx+(k-1)y=3中得k+k-1=3,

∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.

20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-1. 2

113时,x-y=1+=; 222

111当x=-1,y=-时,x-y=-1+=-. 222当x=1,y=-

解析:任何有理数的平方都是非负数,且题中两非负数之和为0,

则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.

?x?4121.解:经验算?是方程x+3y=5的解,再写一个方程,如x-y=3. y?12??x?y?1322.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得?. 0.8x?2y?20?

?4y?1?x (2)解:设有x只鸡,y个笼,根据题意得?. 5(y?1)?x?

23.解:满足,不一定.

解析:∵??x?y?25的解既是方程x+y=25的解,也满足2x-y=8,?

?2x?y?8

∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,

?x?y?25如x=10,y=12,不满足方程组?. 2x?y?8?

24.解:存在,四组.∵原方程可变形为-mx=7,

∴当m=1时,x=-7;m=-1时,x=7;m=?7时,x=-1;m=-7时x=1.

- 5 -

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com