haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

中考二次函数应用问题

发布时间:2013-09-18 09:54:25  

二次函数应用题

例1 :某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系:

1. 写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销

售利润是指所卖出服装的销售价与购进价的差);

2. 通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的

销售价定为多少最为合适;最大销售利润为多少?

分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。

在这个问题中,每件服装的利润为(),而销售的件数是(+204),那么就能得到一个与之间的函数关系,这个函数是二次函数.

要求销售的最大利润,就是要求这个二次函数的最大值.

例2 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).

在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5

米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会

出现失误.

(1)求这条抛物线的解析式;

(2)在某次试跳中,测得运动员在

空中的运动路线是(1)中的抛物线,

且运动员在空中调整好入水姿势时,距 池边的水平距离为米,问此次跳水会不会失误?

并通过计算说明理由.

分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为.

(2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米.,时,该运动员是不是距水面高度为5米.

.

1 解:(1)在给定的直角坐标系下,设最高点为A,入水点为B,抛物线的解析式为

由题意,知O(0,0),B(2,-10),且顶点A的纵坐标为

.

解得

∵抛物线对称轴在轴右侧,∴

又∵抛物线开口向下,∴

.

∴抛物线的解析式为 (2)当运动员在空中距池边的水平距离为米时, 即时,

∴此时运动员距水面的高为

因此,此次跳水会失误.

本节练习题如下:

1、某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量

每件的销售价(元)满足一次函数: (件)与(1)写出商场卖这种商品每天的销售利润与每件的销售价间的函数数关系式.

(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

2

2、如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形的边米,面积为平方米.

米2时,的(1)求:与之间的函数关系式,并求当

值;

(2)设矩形的边黄金矩形的长和宽.

.

练习1答案:

当定价为42元时,最大销售利润为432元.

练习2答案:(1)

(2)当又

由①、②解得

其中20则 ② , 不合题意,舍去,

当矩形成黄金矩形时,宽为,长为. ① 时,

米,如果满足关系式 即矩形成黄金矩形,求此

3、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图所示,如图建立直角坐标系,水流喷出的高度与水平距离

之间的关系式是

.

请回答下列问题:

1. 柱子OA的高度为多少米?

2. 喷出的水流距水平面的最大高度是多少米?

若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外?

3

练习3答案:

(1)OA高度为米.

(2)当时,,即水流距水平面的最大高为米.

(3)当时, 其中不合题意,

答:水池的半径至少要2.5米,才能使喷出的水流不至于落在池外.

二次函数的图象是一条抛物线,抛物线又是一种常见的图形,在实际生活中用处广泛,因此结合实际问题学习抛物线的有关性质,可以更加深刻地认识事物的本质.

1. 一男生掷铅球,铅球行进高度(m),与水平距离

(m)之间的关系是

1. 在直角坐标系画出函数图象,并求出铅球掷出的距离;

2. 在体育加试中,男生铅球的优秀成绩为11m,若上述抛物线顶点不变,开口方

向不变,试计算成绩优秀时,铅球出手的最低高度是多少?

1、已知:如图正方形ABCD

的边长为,在对角线BD上有一动点

=K,过K作PQ∥AC并交正方形的两边为P、Q,设BK

=,

.

求:(1)关于的函数关系式;

(2)画出函数图像。

4

练习1答案

(1)设AC与BD相交于O,当K在OB上时,

∵O为AD中点, K为PQ中点, ∴PQ=2BK=2 ∵ (0<<1)

当K在OD上运动时,KD=2-, ∴PQ=2(2-)

, (1≤<2)

∴所求的函数关系式为

(2)函数图象如图所示。

2、如图,这是某空防部队进行射击训练时在平面直角坐标系中的示意图,在地面O、A两个观测点测得空中固定目标C的仰角分别为,OA=1千米,

,位于O点正上方千米D点处的直升飞机

向目标C发射防空导弹,该导弹运动达到距地面最大高度3千米时,相应的水平距离为4千米(即图中E点)。

(1)若导弹运行轨道为一抛物线,

求该抛物线的解析式;

(2)说明按(1)中轨道运动的导

弹能否击中目标C的理由。

练习题2答案

(1)D(0,),E是抛物线的顶点,坐标为(4,3) 设抛物线的解析式

(2)设C点坐标为,则

5

把代入抛物线解析式,得

∴C在抛物线上,即导弹能击中目标。

3、如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为轴,横断面的对称轴为轴,桥拱的

AD和

段CD和

(1)求桥拱

线的解析式

(2)BE和是两侧高为5.5米的支柱,OA和部分为一段抛物线,顶点G的高度为8米,为两个方向的汽车通行区,宽都为15米,线为两段对称的上桥斜坡,其坡度为1:4 所在抛物 的长; 为支撑斜坡的

立柱,其高都为4米,相应

的AB和为两个方向的行

的宽. 人及非机动车通行区,求AB和

(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,今有一大型货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米,它能否从OA(或)区域安通过?请说明理由.

练习3 答案

(1)设DG所在的抛物线的解析式为

由题意得G(0,8),D(15,5.5)

∴DGDˊ所在的抛物线的解析式为

.

6

(2)

.

(米).

答:AB和的宽都是6米.

(3)该大型货车可以从OA(或)区域安全通过 在中,当时,

∴该大型货车可以从OA(或)区域安全通过.

7

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com