haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

九年级数学上册知识点总结_北师大版_2

发布时间:2013-11-02 08:03:59  

第一章 证明(二)

找abc时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。 ※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。

※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30o,这它所对的直角边必然等于斜边的一半。

※有一个角等于60o的等腰三角形是等边三角形。

※如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:a2?b2?c2(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)

※垂直平分线是垂直于一条线段并且平分这条线段的直线。 <直线与射线有垂线,但无垂直平分线>

※线段垂直平分线上的点到这一条线段两个端点距离相等。 ※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如图1所示,AO=BO=CO)

C C 图1 图2

※角平分线上的点到角两边的距离相等。

※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

角平分线是到角的两边距离相等的所有点的集合。

※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。 (如图2所示,OD=OE=OF)

第二章 一元二次方程

※只含有一个未知数的整式方程,且都可以化为ax2?bx?c?0(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

※把ax2?bx?c?0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

※解一元二次方程的方法:①配方法 <即将其变为

用心 爱心※配方法解一元二次方程的基本步骤: ①把方程化成一元二次方程的一般形式; ②将二次项系数化成1;

③把常数项移到方程的右边;

④两边加上一次项系数的一半的平方; ⑤把方程转化成(x?m)2?0的形式;

⑥两边开方求其根。

※根与系数的关系:当b2

-4ac>0时,方程有两个不等的实数

根;当b2-4ac=0时,方程有两个相等的实数根;当b2

-4ac<0时,方程无实数根。

※如果一元二次方程ax2?bx?c?0的两根分别为x1、x2,则有:xbc1?x2??a

,

x1?x2?

a

. ※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;

(2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

①x22

211?x2?(x1?x2)?2x1x2 ②

x?1?

x1?x2

1x2x1x2

③(x221?x2)?(x1?x2)?4x1x2

(3)已知方程的两根x1、x2,可以构造一元二次方程:

x2?(x1?x2)x?x1x2?0

(4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2?(x1

?x2)x?x1x2?0 的根

※在利用方程来解应用题时,主要分为两步:

①设未知数(在设未知数时,大多数情况要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑) ②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

※处理问题的过程可以进一步概括为:

问题

分析抽象?方程求解

检验

?解答

第三章 证明(三)

※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。

※平行四边形的性质:平行四边形的对边相等,对角相等,对

专心

1

角线互相平分。

※平行四边形的判别方法:

1.两组对边分别平行的四边形是平行四边形。 2.两组对边分别相等的四边形是平行四边形。 3.一组对边平行且相等的四边形是平行四边形。 4.两条对角线互相平分的四边形是平行四边形。

行线之间的距离。

菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。 ※菱形的判别方法:

1.一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。

※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ※矩形的判定:

1.有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。 正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴) ※正方形常用的判定:

1.有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 3.对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※两条腰相等的梯形叫做等腰梯形。 ※一条腰和底垂直的梯形叫做直角梯形。 ※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

※三角形的中位线平行于第三边,并且等于第三边的一半。 ※夹在两条平行线间的平行线段相等。

※在直角三角形中,斜边上的中线等于斜边的一半

用心 爱心第四章图 视图与投影3

※三视图包括:主视图、俯视图和左视图。

三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。 主视图:基本可认为从物体正面视得的图象. 俯视图:基本可认为从物体上面视得的图象

左视图:基本可认为从物体左面视得的图象.

※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。 ※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。 ※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。

物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。

太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。

探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。

※区分平行投影和中心投影:①观察光源;②观察影子。 眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。

※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。

①点在一个平面上的投影仍是一个点; ②线段在一个面上的投影可分为三种情况:

1.线段垂直于投影面时,投影为一点;2.线段平行于投影面时,投影长度等于线段的实际长度;3.线段倾斜于投影面时,投影长度小于线段的实际长度。

③平面图形在某一平面上的投影可分为三种情况:

1.平面图形和投影面平行的情况下,其投影为实际形状;2.平面图形和投影面垂直的情况下,其投影为一线段;3.平面图形和投影面倾斜的情况下,其投影小于实际的形状。反比例函数知识点总结

知识点1 反比例函数的定义

一般地,形如y?

k

x

(k为常数,k?0)的函数称为反比例函数,它可以从以下几个方面来理解:

专心

2

2. 3. 2. 3. 2. 4.

就可以求出k的值,从而确定反比例函数的表达式。

知识点

2用待定系数法求反比例函数的解析式

由于反比例函数y?

k

(k?0)中,只有一个待定系x

数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量x?0,函数值y?0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;

②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;

④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质

☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

注意:描述函数值的增减情况时,必须指出“在每个象限内??”否则,笼统地说,当k?0时,y随x的增大而减小“,就会与事实不符的矛盾。

反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k的符号。如y?在第一、第三象限,则可知k?0。 ☆反比例函数y?

kx

k

(k?0)中比例系数k的绝对值k的x

几何意义。

如图所示,过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,E、F分别为垂足,

则k?xy?x?y?PF?PE?S矩形OEPF ☆ 反比例函数y?

kk(k?0)中,k越大,双曲线y?xx

k

越远离坐标原点;k越小,双曲线y?越靠近坐标原

x

点。

☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线

又是轴对称图形,对称轴是直线y=x和直线y=-x。

3

用心 爱心 专心

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com