haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

全等三角形证明经典50题(含答案)1

发布时间:2013-11-04 10:34:49  

全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD

B

D

解:延长AD到E,使AD=DE

∵D是BC中点

∴BD=DC

在△ACD和△BDE中

AD=DE

∠BDE=∠ADC

BD=DC

∴△ACD≌△BDE

∴AC=BE=2

∵在△ABE中

AB-BE<AE<AB+BE

∵AB=4

即4-2<2AD<4+2

1<AD<3

∴AD=2

2. 已知:D是AB中点,∠ACB=90°,求证:CD?

1AB 2

延长CD与P,使D为CP中点。连接AP,BP ∵DP=DC,DA=DB

∴ACBP为平行四边形

又∠ACB=90

∴平行四边形ACBP为矩形

1

∴AB=CP=1/2AB

3. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

证明:连接BF和EF

∵ BC=ED,CF=DF,∠BCF=∠EDF

∴ 三角形BCF全等于三角形EDF(边角边)

∴ BF=EF,∠CBF=∠DEF

连接BE

在三角形BEF中,BF=EF

∴ ∠EBF=∠BEF。

∵ ∠ABC=∠AED。

∴ ∠ABE=∠AEB。

∴ AB=AE。

在三角形ABF和三角形AEF中

AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF

∴ 三角形ABF和三角形AEF全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

过C作CG∥EF交AD的延长线于点G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC(对顶角)

2

∴△EFD≌△CGD

EF=CG

∠CGD=∠EFD

又,EF∥AB

∴,∠EFD=∠1

∠1=∠2

∴∠CGD=∠2

∴△AGC为等腰三角形,

AC=CG

又 EF=CG

∴EF=AC

5. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

A

证明:延长AB取点E,使AE=AC,连接DE

∵AD平分∠BAC

∴∠EAD=∠CAD

∵AE=AC,AD=AD

∴△AED≌△ACD (SAS)

∴∠E=∠C

∵AC=AB+BD

∴AE=AB+BD

∵AE=AB+BE

∴BD=BE

∴∠BDE=∠E

∵∠ABC=∠E+∠BDE

∴∠ABC=2∠E

∴∠ABC=2∠C

3

6. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:

AE=AD+BE

证明:

在AE上取F,使EF=EB,连接CF

∵CE⊥AB

∴∠CEB=∠CEF=90°

∵EB=EF,CE=CE,

∴△CEB≌△CEF

∴∠B=∠CFE

∵∠B+∠D=180°,∠CFE+∠CFA=180°

∴∠D=∠CFA

∵AC平分∠BAD

∴∠DAC=∠FAC

∵AC=AC

∴△ADC≌△AFC(SAS)

∴AD=AF

∴AE=AF+FE=AD+BE

7. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD

B

D 解:延长AD到E,使AD=DE

∵D是BC中点

∴BD=DC

在△ACD和△BDE中

4

AD=DE

∠BDE=∠ADC

BD=DC

∴△ACD≌△BDE

∴AC=BE=2

∵在△ABE中

AB-BE<AE<AB+BE

∵AB=4

即4-2<2AD<4+2

1<AD<3

∴AD=2

8. 已知:D是AB中点,∠ACB=90°,求证:CD?

1

AB 5

9. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

证明:连接BF和EF。

∵ BC=ED,CF=DF,∠BCF=∠EDF。

∴ 三角形BCF全等于三角形EDF(边角边)。

∴ BF=EF,∠CBF=∠DEF。

连接BE。

在三角形BEF中,BF=EF。

∴ ∠EBF=∠BEF。

又∵ ∠ABC=∠AED。

∴ ∠ABE=∠AEB。

∴ AB=AE。

在三角形ABF和三角形AEF中,

AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。

∴ 三角形ABF和三角形AEF全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

10. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

过C作CG∥EF交AD的延长线于点G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC(对顶角)

∴△EFD≌△CGD

6

EF=CG

∠CGD=∠EFD

又EF∥AB

∴∠EFD=∠1

∠1=∠2

∴∠CGD=∠2

∴△AGC为等腰三角形,

AC=CG

又 EF=CG

∴EF=AC

11. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

B

证明:延长AB取点E,使AE=AC,连接DE

∵AD平分∠BAC

∴∠EAD=∠CAD

∵AE=AC,AD=AD

∴△AED≌△ACD (SAS)

∴∠E=∠C

∵AC=AB+BD

∴AE=AB+BD

∵AE=AB+BE

∴BD=BE

∴∠BDE=∠E

∵∠ABC=∠E+∠BDE

∴∠ABC=2∠E

∴∠ABC=2∠C

12. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 7

在AE上取F,使EF=EB,连接CF

∵CE⊥AB

∴∠CEB=∠CEF=90°

∵EB=EF,CE=CE,

∴△CEB≌△CEF

∴∠B=∠CFE

∵∠B+∠D=180°,∠CFE+∠CFA=180°

∴∠D=∠CFA

∵AC平分∠BAD

∴∠DAC=∠FAC

又∵AC=AC

∴△ADC≌△AFC(SAS)

∴AD=AF

∴AE=AF+FE=AD+BE

12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。

在BC上截取BF=AB,连接EF

∵BE平分∠ABC

∴∠ABE=∠FBE

又∵BE=BE

∴⊿ABE≌⊿FBE(SAS)

∴∠A=∠

BFE

8

∵AB//CD

∴∠A+∠D=180o

∵∠BFE+∠CFE=180o

∴∠D=∠CFE

又∵∠DCE=∠FCE

CE平分∠BCD

CE=CE

∴⊿DCE≌⊿FCE(AAS)

∴CD=CF

∴BC=BF+CF=AB+CD

13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C

AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,

∵∠EAB=∠BDE,

∴∠AED=∠ABD,

∴四边形ABDE是平行四边形。

∴得:AE=BD,

∵AF=CD,EF=BC,

∴三角形AEF全等于三角形DBC,

∴∠F=∠C。

14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C

证明:设线段AB,CD所在的直线交于E,(当AD<BC时,E点是射线BA,CD的交点,当AD>BC时,E点是射线AB,DC的交点)。则:

△AED是等腰三角形。

∴AE=DE

而AB=CD

∴BE=CE (等量加等量,或等量减等量)

∴△BEC是等腰三角形

∴∠B=∠C.

9

15. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB

A D

在AC上取点E,

使AE=AB。

∵AE=AB

AP=AP

∠EAP=∠BAE,

∴△EAP≌△BAP

∴PE=PB。

PC<EC+PE

∴PC<(AC-AE)+PB

∴PC-PB<AC-AB。

16. 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE

证明:

在AC上取一点D,使得角DBC=角C

∵∠ABC=3∠C

∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

∵∠ADB=∠C+∠DBC=2∠C;

∴AB=AD

∴AC – AB =AC-AD=CD=BD

在等腰三角形ABD中,AE是角BAD的角平分线,

∴AE垂直BD

∵BE⊥AE

∴点E一定在直线BD上,

10

在等腰三角形ABD中,AB=AD,AE垂直BD

∴点E也是BD的中点

∴BD=2BE

∵BD=CD=AC-AB

∴AC-AB=2BE

17. 已知,E是AB中点,AF=BD,BD=5,AC=7,求DC

∵作AG∥BD交DE延长线于G

∴AGE全等BDE

∴AG=BD=5

∴AGF∽CDF

AF=AG=5

∴DC=CF=2

18.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC. 解:延长AD至BC于点E,

∵BD=DC ∴△BDC是等腰三角形

∴∠DBC=∠DCB

又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2

即∠ABC=∠ACB

∴△ABC是等腰三角形

∴AB=AC

在△ABD和△ACD中

{AB=AC

∠1=∠2

BD=DC

∴△ABD和△ACD是全等三角形(边角边)

∴∠BAD=∠CAD

∴AE是△ABC的中垂线

∴AE⊥BC

∴AD⊥BC

11

19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.

求证:∠OAB=∠OBA

证明:

∵OM平分∠POQ

∴∠POM=∠QOM

∵MA⊥OP,MB⊥OQ

∴∠MAO=∠MBO=90

∵OM=OM

∴△AOM≌△BOM (AAS)

∴OA=OB

∵ON=ON

∴△AON≌△BON (SAS)

∴∠OAB=∠OBA,∠ONA=∠ONB

∵∠ONA+∠ONB=180

∴∠ONA=∠ONB=90

∴OM⊥AB

20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.

P E

D

BE的延长线,与AP相交于F点,

∵PA//BC BA∴∠

PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA

的角平分线

∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形

在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线

∴三角形FAB为等腰三角形,AB=AF,BE=EF

在三角形DEF与三角形BEC中,

∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,

∴三角形DEF与三角形BEC为全等三角形,∴DF=BC

∴AB=AF=AD+DF=AD+BC

21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B

A

12 CDB

延长AC到E

使AE=AC 连接 ED

∵ AB=AC+CD

∴ CD=CE

可得∠B=∠E

△CDE为等腰

∠ACB=2∠B

22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

(1)连接BE,DF.

∵DE⊥AC于E,BF⊥AC于F,

∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中,

∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA(HL),

∴DE=BF.

∴四边形BEDF是平行四边形.

∴MB=MD,ME=MF;

(2)连接BE,DF.

∵DE⊥AC于E,BF⊥AC于F,

∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中,

∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA(HL),

∴DE=BF.

∴四边形BEDF是平行四边形.

13

∴MB=MD,ME=MF.

23.已知:如图,DC∥AB,且DC=AE,E为AB的中点,

(1)求证:△AED≌△EBC.

(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): A

D

C

证明:

∵DC∥AB

∴∠CDE=∠AED

∵DE=DE,DC=AE

∴△AED≌△EDC

∵E为AB中点

∴AE=BE

∴BE=DC

∵DC∥AB

∴∠DCE=∠BEC

∵CE=CE

∴△EBC≌△EDC

∴△AED≌△EBC

24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.

求证:BD=2CE.

F

AEB E

证明:

BC∵∠CEB=∠CAB=90°

∴ABCE四点共元

∵∠AB E=∠CB E

14

∴AE=CE

∴∠ECA=∠EAC

取线段BD的中点G,连接AG,则:AG=BG=DG

∴∠GAB=∠ABG

而:∠ECA=∠GBA (同弧上的圆周角相等)

∴∠ECA=∠EAC=∠GBA=∠GAB

而:AC=AB

∴△AEC≌△AGB

∴EC=BG=DG

∴BE=2CE

25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 DEFC

AB

证明:∵DF=CE,

∴DF-EF=CE-EF,

即DE=CF,

在△AED和△BFC中,

∵ AD=BC, ∠D=∠C ,DE=CF

∴△AED≌△BFC(SAS)

26、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

A

F

B

EMC

15

证明:

∵BE‖CF

∴∠E=∠CFM,∠EBM=∠FCM

∵BE=CF

∴△BEM≌△CFM

∴BM=CM

∴AM是△ABC的中线.

27、(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。

A

D

BC

∵△ABD和△BCD的三条边都相等

∴△ABD=△BCD

∴∠ADB=∠CD

∴∠ADB=∠CDB=90°

∴BD⊥AC

28、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF

A

D

BC

F

在△ABD与△ACD中

AB=AC

BD=DC

AD=AD

∴△ABD≌△ACD

∴∠ADB=∠ADC

16

∴∠BDF=∠FDC

在△BDF与△FDC中

BD=DC

∠BDF=∠FDC

DF=DF

∴△FBD≌△FCD

∴BF=FC

29、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。

A

FB

E

CD

∵AB=DC

AE=DF,

CE=FB

CE+EF=EF+FB

∴△ABE=△CDF

∵∠DCB=∠ABF

AB=DC BF=CE

△ABF=△CDE

∴AF=DE

30.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上

.

证明:连接EF

∵AB∥CD

∴∠B=∠C

∵M是BC中点

∴BM=CM

在△BEM和△CFM中

BE=CF

17

∠B=∠C

BM=CM

∴△BEM≌△CFM(SAS)

∴CF=BE

31.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.

∵AF=CE,FE=EF.

∴AE=CF.

∵DF//BE,

∴∠AEB=∠CFD(两直线平行,内错角相等)

∵BE=DF

∴:△ABE≌△CDF(SAS)

32.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证: AE=AF。

连接BD;

∵AB=AD BC=D

∴∠ADB=∠ABD ∠CDB=∠ABD;两角相加,∠ADC=∠ABC;

∵BC=DC E\F是中点

∴DE=BF;

∵AB=AD DE=BF

∠ADC=∠ABC

∴AE=AF。 33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 18

AC

证明:

在△ADC,△ABC中

∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA

∴△ADC≌△ABC(两角加一边)

∵AB=AD,BC=CD

在△DEC与△BEC中

∠BCA=∠DCA,CE=CE,BC=CD

∴△DEC≌△BEC(两边夹一角)

∴∠DEC=∠BEC

34.已知AB∥DE,BC∥EF,D,

C在AF上,且AD=CF,求证:△ABC≌△DEF.

∵AD=DF

∴AC=DF

∵AB//DE

∴∠A=∠EDF

又∵BC//EF

∴∠F=∠BCA

∴△ABC≌△DEF(ASA)

19

35.已知:如图,AB=AC,BD?AC,CE?AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.

E

证明: A ∵BD⊥AC

∴∠BDC=90°

∵CE⊥AB

∴∠BEC=90°

∴∠BDC=∠BEC=90°

∵AB=AC

∴∠DCB=∠EBC

∴BC=BC

∴Rt△BDC≌Rt△BEC(AAS)

∴BE=CD

36、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。 求证:DE=DF.

证明:

∵AD是∠BAC的平分线

∴∠EAD=∠FAD

∵DE⊥AB,DF⊥AC

∴∠BFD=∠CFD=90°

∴∠AED与∠AFD=90°

20

在△AED与△AFD中

∠EAD=∠FAD

AD=AD

∠AED=∠AFD

∴△AED≌△AFD(AAS)

∴AE=AF

在△AEO与△AFO中

∠EAO=∠FAO

AO=AO

AE=AF

∴△AEO≌△AFO(SAS)

∴∠AOE=∠AOF=90°

∴AD⊥EF

37.已知:如图, AC?BC于C , DE?AC于E , AD?AB于A , BC =AE.若AB = 5 ,求AD 的长?

∵AD⊥AB

∴∠BAC=∠ADE 又∵

AC⊥BC于C,DE⊥AC于E

根据三角形角度之和等于180度

∴∠ABC=∠DAE

∵BC=AE,△ABC≌△DAE(ASA)

∴AD=AB=5

21

38.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC

A

C

证明:

∵AB=AC

∴∠B=∠C

∵ME⊥AB,MF⊥AC

∴∠BEM=∠CFM=90°

在△BME和△CMF中

∵ ∠B=∠C ∠BEM=∠CFM=90° ME=MF

∴△BME≌△CMF(AAS)

∴MB=MC.

39.如图,给出五个等量关系:①AD?BC ②AC?BD ③CE?DE ④?D??C ⑤?DAB??CBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.

已知:①AD=BC,⑤∠DAB=∠CBA

求证:△DAB≌△CBA

证明:∵AD=BC,∠DAB=∠CBA

又∵AB=AB

∴△DAB≌△CBA

40.在△ABC中,?ACB?90?,AC?BC,直线MN经过点C,且AD?MN于D,

求证: ①?ADC≌?CEB;BE?MN于E.(1)当直线MN绕点C旋转到图1的位置时,

②DE?AD?BE;

(2)当直线MN

绕点C旋转到图

2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.

22

(1)

①∵∠ADC=∠ACB=∠BEC=90°,

∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.

∴∠CAD=∠BCE.

∵AC=BC,

∴△ADC≌△CEB.

②∵△ADC≌△CEB,

∴CE=AD,CD=BE.

∴DE=CE+CD=AD+BE.

(2)∵∠ADC=∠CEB=∠ACB=90°,

∴∠ACD=∠CBE.

又∵AC=BC,

∴△ACD≌△CBE.

∴CE=AD,CD=BE.

∴DE=CE﹣CD=AD﹣BE

41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF

E C

(1)∵AE⊥AB,AF⊥AC,

∴∠BAE=∠CAF=90°,

∴∠BAE+∠BAC=∠CAF+∠BAC,

即∠EAC=∠BAF,

在△ABF和△AEC中,

∵AE=AB,∠EAC=∠BAF,AF=AC,

∴△ABF≌△AEC(SAS),

∴EC=BF;

(2)如图,根据(1),△ABF≌△AEC,

∴∠AEC=∠ABF,

∵AE⊥AB,

∴∠BAE=90°,

∴∠AEC+∠ADE=90°,

∵∠ADE=∠BDM(对顶角相等),

∴∠ABF+∠BDM=90°,

在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,

23

∴EC⊥BF.

42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。

证明:

(1)

∵BE⊥AC,CF⊥AB

∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°

∴∠ABM=∠ACN

∵BM=AC,CN=AB

∴△ABM≌△NAC

∴AM=AN

(2)

∵△ABM≌△NAC

∴∠BAM=∠N

∵∠N+∠BAN=90°

∴∠BAM+∠BAN=90°

即∠MAN=90°

∴AM⊥AN

43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF

24

在△ABF和△CDE中

,AB=DE

∠A=∠D

AF=CD

∴△ABF≡△CDE(边角边)

∴FB=CE

在四边形BCEF中

FB=CE

BC=EF

∴四边形BCEF是平行四边形

∴BC‖EF

44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由

在AB上取点N ,使得AN=AC

∵∠CAE=∠EAN

∴AE为公共,

∴△CAE≌△EAN

∴∠ANE=∠ACE

又∵AC平行BD

∴∠ACE+∠BDE=180

而∠ANE+∠ENB=180

∴∠ENB=∠BDE

∠NBE=∠EBN

∵BE为公共边

∴△EBN≌△EBD

25

∴BD=BN

∴AB=AN+BN=AC+BD

45、(10分) 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.

证明:

∵AD是△ABC的中线

BD=CD

∵DF=DE(已知)

∠BDE=∠FDC

∴△BDE≌△FDC

则∠EBD=∠FCD

∴BE∥CF(内错角相等,两直线平行)。

46、(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE?BF. 求证:AB∥CD.

D

B C

证明:

∵DE⊥AC,BF⊥AC

∴∠CED=∠AFB=90o

又∵AB=CD,BF=DE

∴Rt⊿ABF≌Rt⊿CDE(HL)

∴AF=CE

∠BAF=∠DCE

∴AB//CD

47、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD AD

1

34

CB

26

∵,∠3=∠4

∴OB=OC

在△AOB和△DOC中

∠1=∠2

OB=OC

∠AOB=∠DOC

△AOB≌△DOC

∴AO=DO AO+OC=DO+OB AC=DB

在△ACB和△DBC中

AC=DB

,∠3=∠4

BC=CB

△ACB≌△DBC

∴AB=CD

48、 (10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.

E

CE>DE。当∠AEB越小,则DE越小。

证明:

过D作AE平行线与AC交于F,连接FB

由已知条件知AFDE为平行四边形,ABEC为矩形 ,且△DFB为等腰三角形。 RT△BAE中,∠AEB为锐角,即∠AEB<90°

∵DF//AE ∴∠FDB=∠AEB<90°

△DFB中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°

RT△AFB中,∠FBA=90°-∠DBF <45°

∠AFB=90°-∠FBA>45°

∴AB>AF

∵AB=CE AF=DE

∴CE>DE

49、 (10分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.

27

∵AB=DC,AC=DB,BC=BC

∴△ABC≌△DCB,

∴∠ABC=∠DCB

又∵BE=CE,AB=DC

∴△ABE≌△DCE

∴AE=DE

50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.

图9 E B 作CG⊥AB,交AD于H,

则∠ACH=45o,∠BCH=45o

∵∠CAH=90o-∠CDA, ∠BCE=90o-∠CDA ∴∠CAH=∠BCE

又∵AC=CB, ∠ACH=∠B=45o

∴△ACH≌△CBE, ∴CH=BE

又∵∠DCH=∠B=45o, CD=DB

∴△CFD≌△BED

∴∠ADC=∠BDE

28

29

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com