haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

八年级数学等腰三角形教案(沪科版)

发布时间:2013-11-18 11:34:42  

课题:等腰三角形(沪科版八年级数学)

教材分析:

本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。教材通过学生对等腰三角形的叠合操作,得出等腰三角形的轴对称性,给出了等腰三角形的性质1,并对性质1进行了证明,从性质1的证明过程中,得出等边三角形性质及等腰三角形性质2,这里“等边对等角是今后证明两角相等常用方法之一,而等腰三角形的“三线合一”是今后证明两条线段相等、两个角相等及两条直线互相垂直的重要依据。

教学目的:

1、经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力;

2、掌握等腰三角形的性质及其两个推论;

3、运用等腰三角形的性质及其推论进行有关证明和计算

教学重难点:

重点是等腰三角形的性质定理及其证明;难点是“三线合一”的理解及例1的讲解

关键:运用观察、操作来领悟规律,以全等三角形为推理工具,在交流中突破难点 教学方法:直观教学发现法和启发诱导教学法,与学生实践操作、合作探究

教具:长方形纸片、剪刀、自制等腰三角形纸片

教学过程

一、 创设情景,引入新知

活动1:请同学们把一张长方形的纸片对折,剪去(或用刀子裁)一个角,再把它展开,得到的是什么样三角形?

教师示范操作,然后学生跟着动手操作,观察得出结论:“剪刀剪过的两条边是相等的;剪出的图形是等腰三角形”,根据学生回答,板书:等腰三角形

师生共同回顾:有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角

教师提问:剪出的三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想

学生思考并发表自已的看法,教师提出本节课所要解决的问题

师生归纳:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴(板书)

教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴。

二、 合作交流,探索新知

活动2:教师出示刚才剪下的等腰三角形纸片,标上字母如图所示:

B D C D B( C ) 把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图图形,△ADB与△ADC有什么关系?图中哪些线段或角相等?AD与BC垂直吗?为什么?

学生回答:△ADB与△ADC重合,∠B=∠C,∠BAD=∠CAD,∠ADB=∠CDA,BD=CD 活动3:由上面的性质我们可以得到等腰三角形如下性质:

性质1:等腰三角形的两个底角相等,简称:等边对等角(板书)

教师提问:这个命题的题设是什么?结论是什么?学生可结合图形回答

(板书)已知:在△ABC中,AB=AC

求证:∠B=∠C

说明:将等腰三角形写成已知时,通常写成“在△ABC中,AB=AC”而不写成“等腰”两个字

教师引等学生回答:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形?

通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,可由两位学生板演,教师巡视,并给订正。

同学们思考一下,还有没有其它辅助线的作法,教师可作提示:作中线AD,由学生口答,或者指导学生看课本证明。

教师归纳等腰三角形性质1,并指出它的几何符号语言的书写:

如上图:∵ AB=AC(已知)

∴∠B=∠C(等边对等角)

教师提出问题:练习1(口答)

1、等腰直角三角形每一个锐角的度数是多少度?

2、如果等腰三角形的底角等于40°,那么它的顶角的度数是多少?

3、如果等腰三角形的顶角是40°,那么它的底角的度数是多少?

4、如果等腰三角形的一个角是40°,那么其它的两个角各是多少度?

5、如果等腰三角形的一个内角是120°,则其它的两个角各是多少度?

6、等边三角形各内角有什么关系?各等于多少度?

要求学生完成教师提出的问题,教师归纳:

(1)等腰三角形中顶角与底角的关系:顶角十 2 ×底角=180°

(2)推论:等边三角形三个内角相等,每一个内角都等于60°(板书)

教师与学生合作分析,口述(2)的证明过程。

活动4:提出问题:从性质1的证明过程可以知道,BD=CD,

∠ADB=∠ADC=90°,由此,你能得出等腰三角形还具有什么性质?

让学生运用数学语言表述所发现的规律,师生共同归纳得出:

性质2 等腰三角形的顶角的平分线垂直平分底边(板书)

即:等腰三角形顶角的平分线、底边上的中线和底边上的高互相重合

三线合一(板书)

活动5:教师出示课本例1(小黑板显示)

例1 如图在△ABC中,AB=AC,∠BAC=120°,点D、E是底边的两点,且BD=AD,CE=AE,求∠DAE的度数

B D E C

分析例1,剖析推理方法及依据,提出讨论问题,引导学生思考,根据学生回答教师板书例1过程,解略

三、 巩固练习,强化新知

练习2:课本练习第3题(出示小黑板)

如图,在ABC中,AB=AC B D C (1)∵AD⊥BD,∴∠______ = ∠_____; ______ = ______(等腰三角形底边上的高与______、______重合)

(2)∵AD是中线 ∴_____ ⊥_____;∠_____= ∠_____(等腰三角形底边上的中线与_____、_____重合)

(3)∵AD是角平分线 ∴____ ⊥ ____;____= ____(等腰三角形顶角的平分线与______、_____重合)

四、 师生互动,总结新知

请同学们回顾本节课所学的内容,有哪些收获?

师生活动:学生思考后,用自己语言归纳,教师适时点评,并关注以下几个问题:1、等边对等角;2、等腰三角形三线合一;3、等边三角形性质;4、等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线)

五、 作业设计,深化新知

课本P127页练习第2题、P132页习题16.3第1题

教学反思:

本节课通过对等腰三角形叠合操作引出等腰三角形是轴对称图形,进而得到等腰三角形的性质1:等边对等角,这种操作有利于学生发现等腰三角形性质的证明,给出三种不同的辅助线,是用来培养学生的发散思维能力。新教材中例1设计与旧人教版求“人字形的角度”相比具有一定难度,为此,在讲完性质1后,设计如教案中练习1,一方面是用来巩固性质1,其中练习1中2、3、4具有变式教学思想,另一方面是为推论及性质2作准备。教案中练习2是用来巩固性质2,重点是培养学生的几何符号语言表达能力。让学生回顾,是为了培养学生的语言表达能力,同时加深学生对所学知识的理解,促进学生对学习过程的进行反思。在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,培养学生应用意识,提高学生学习数学素养。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com