haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

旋转教案

发布时间:2013-11-18 13:40:06  

第二十三章

旋转

班级: 九年级2班 教师: 秦兴平 时间: 二〇一二年十月九日

第二十三章 旋转

23.1 图形的旋转(1)

第一课时

教学内容

1.什么叫旋转?旋转中心?旋转角?

2.什么叫旋转的对应点?

教学目标

了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.

重难点、关键

1.重点:旋转及对应点的有关概念及其应用.

2.难点与关键:从活生生的数学中抽出概念.

教具、学具准备

小黑板、三角尺

教学过程

一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)?的对称图形并口述它既有的一些性质.

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢??从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.?如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)

3.第1、2两题有什么共同特点呢?

共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固 2

定点转动一定的角度.

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点. 下面我们来运用这些概念来解决一些问题.

例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺

时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A、B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置.

例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.

(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?

(2)请画出旋转中心和旋转角.

(3)指出,经过旋转,点A、B、C、D分别移到什么位置?

(老师点评)

(1)可以看做是由正方形ABCD的基本图案通过旋转而得到

的.(2)?画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H. 最后强调,这个旋转中心是固定的,即正方形对角线的交点,?但旋转角和对应点都是不唯一的.

三、巩固练习

教材P65 练习1、2、3.

四、应用拓展

例3.两个边长为1的正方形,如图所示,?让一个正方形的顶点

与另一个正方形中心重合,不难知道重合部分的面积为1,现把其中一4

个正方形固定不动,?另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化??说明理由.

分析:设任转一角度,如图中的虚线部分,?要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.

五、归纳小结(学生总结,老师点评)

本节课要掌握:

1.旋转及其旋转中心、旋转角的概念.

2.旋转的对应点及其它们的应用.

六、布置作业

1.教材P66 复习巩固1、2、3.

课后反思:

23.1 图形的旋转(2)

第二课时

教学内容

1.对应点到旋转中心的距离相等.

3

2.对应点与旋转中心所连线段的夹角等于旋转角.

3.旋转前后的图形全等及其它们的运用.

教学目标

理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.

先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.

重难点、关键

1.重点:图形的旋转的基本性质及其应用.

2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.

教学过程

一、复习引入

(学生活动)老师口问,学生口答.

1.什么叫旋转?什么叫旋转中心?什么叫旋转角?

2.什么叫旋转的对应点?

3.请独立完成下面的题目.

如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?

(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.

二、探索新知

上面的解题过程中,能否得出什么结论,请回答下面的问题:

1.A、B、C、D、E、F到O点的距离是否相等?

2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?

3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?

老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,

那么这个是否有一般性?下面请看这个实验.

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,

?再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑

板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转

动硬纸板,?在黑板上再描出这个挖掉的三角形(△A′B′C′),移

去硬纸板.

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,?即对

应点与旋转中心所连线段的夹角称为旋转角.

3.△ABC和△A′B′C′形状相同和大小相等,即全等.

综合以上的实验操作和刚才作的(3),得出

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

4

(3)旋转前、后的图形全等.

例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B?对应点的位置,以及旋转后的三角形.

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,?又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.

解:(1)连结CD

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD

(3)在射线CE上截取CB′=CB

则B′即为所求的B的对应点.

(4)连结DB′

则△DB′C就是△ABC绕C点旋转后的图形.

三、巩固练习

教材P64 练习1、2.

四、应用拓展

例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M?在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.

分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.

解:∵四边形ABCD、四边形AKLM是正方形

∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°

∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的 ∴BK=DM

五、归纳小结(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用.

六、布置作业

1.教材P66 复习巩固4 综合运用5、6.

课后反思:

23.2 中心对称(1)

第一课时

教学内容

5

两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.

教学目标

了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题. 复习运用旋转知识作图,?旋转角度变化,?设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.

重难点、关键

1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.

2.难点与关键:从一般旋转中导入中心对称.

教具、学具准备

小黑板、三角尺

教学过程

一、复习引入

请同学们独立完成下题.

如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转

后的三角形,?并写出简要作法.

老师点评:分析,本题已知旋转后点A的对应点是点D,且

旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,

逆时针或顺时针旋转都符合要求,?一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;?已知一对

对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.

作法:(1)连结OA、OB、OC、OD;

(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;

(3)分别截取OE=OB,OF=OC;

(4)依次连结DE、EF、FD;

即:△DEF就是所求作的三角形,如图所示.

二、探索新知

问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:

1.以O为旋转中心,旋转180°后两个图形是否重合?

2.各对称点绕O旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.

6

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.

(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.

(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.

分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,?对称中心就是旋转中心.

(3)旋转后的对应点,便是中心的对称点.

三、巩固练习

教材P74 练习2.

四、应用拓展

例3.如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.

(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.

(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.

五、归纳小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称及对称中心的概念;

2.关于中心的对称点的概念及其运用.

六、布置作业

1.教材P73 练习1.

课后反思:

7

23.2 中心对称(2)

第二课时

教学内容

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,?而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

教学目标

理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.

复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.

重难点、关键

1.重点:中心对称的两条基本性质及其运用.

2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质. 教学过程

一、复习引入

(老师口问,学生口答)

1.什么叫中心对称?什么叫对称中心?

2.什么叫关于中心的对称点?

3.请同学随便画一三角形,以三角形一顶点为对称中心,?画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.

(每组推荐一人上台陈述,老师点评)

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形

(1)作△ABC一顶点为对称中心的对称图形;

(2)作关于一定点O为对称中心的对称图形.

第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.

(1) (2)

从图1中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段. 下面,我们就以图2为例来证明这两个结论.

证明:略

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

8

例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.

分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.

则△DEF即为所求的三角形.

例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B?′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).

二、巩固练习

教材P70 练习.

三、应用拓展

例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.

分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,?旋转60°,便可把OA、OB、OC转化为一个三角形内.

四、归纳小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,?而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用.

五、布置作业

1.教材P74 复习巩固1 综合运用6、7.

课后反思:

9

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com