haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

四边形复习教案

发布时间:2013-11-29 12:27:51  

中心对称与中心对称图形

一、知识点:

1、中心对称;中心对称的性质。

2、中心对称图形:

3、中心对称与中心对称图形之间的关系:

区别:

(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。 联系:

若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形 .

4、对比轴对称图形与中心对称图形:

二、举例:

例1:如图,将点阵中的图形绕点O按逆时针方向旋转900,画出旋转后的图形.

例2:画出将ΔABC绕点O按顺时针方向旋转180°后的对应三角形。

·O

C

例3:如图,已知ΔABC是直角三角形,BC为斜边。若AP=3,将ΔABP绕点A逆时针旋转后,能与ΔACP′重合,求PP′的长。

B C

例4:已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD的长.

B例6:如图,直线l1⊥l2,垂足为O,点A1与点A关于直线l1对称,点A2与点A关于直线l2对称。点A1与点A2有怎样的对称关系?你能说明理由吗?

4、如图是一个平行四边形土地ABCD,后来在其边缘挖了一个小平行四边形水塘DFGH,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留作图痕迹),简要说明理由.

B

平行四边形

一、知识点:

1、平行四边形的定义:

2组对边分别平行的四边形叫做平行四边形。

记作:□ABCD,读作平行四边形ABCD.

平行四边形是中心对称图形,对角线的交点是它的对称中心。

2、平行四边形的性质:

①平行四边形的对边平行;

②平行四边形的对边相等;

③平行四边形的对角相等;

④平行四边形的对角线互相平分。

3、平行四边形的判定:

①2组对边分别平行的四边形是平行四边形;

②2组对边分别相等的四边形是平行四边形;

③2组对角分别相等的四边形是平行四边形;

④对角线互相平分的四边形是平行四边形;

⑤一组对边平行且相等的四边形是平行四边形。

二、举例:

例1:如图,□ABCD中,E、F分别是BC和AD边上的点,且BE=DF,请说明AE与CF的关系,并说明理由。

例2:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线与AD、BC分别相交于点E、F。试探求OE与OF是否相等,并且说明理由。

例3:如图,在□ABCD中,AE⊥BD,CF⊥BD,垂足分别是E、F,四边形AECF是平行四边形吗?为什么?

D

例4:如图,在□ABCD中,点E、F在AC上,且AF=CE,点G、H分别在AB、CD上,且AG=CH,AC与GH相交于点O,

试说明:(1)EG∥FH,(2)GH、EF互相平分。

例5:如图,在平行四边形ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,如果△BEF的面积为2cm2,求平行四边形ABCD的面积。

例6:在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?

例7:已知:如图,分别以△ABC的三边为其中一边,在BC的同侧作三个等边三角形:△ABD、△BCE、△ACF。求证:AE、DF互相平分。

矩形、菱形、正方形

一、知识点:

1、矩形的定义:2、矩形的性质:3、矩形的判定:

4、菱形的定义:5、菱形的性质:6、菱形的判定:7、菱形的面积:

8、正方形的定义:9、正方形的性质:10、正方形的判定:

二、举例:

例1:如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°。

(1)求对角线AC的长;(2)求矩形ABCD的周长 D

C 例2:如图,在矩形ABCD中,CE⊥BD,E为垂足,∠DCE:∠ECB=3:1。求∠ACE的度数。

C

D

例3:如图,在矩形ABCD中,点E在AD上,EC平分∠BED。 (1)△BEC是否为等腰三角形?为什么?

(2)若AB=1,∠ABE=45°,求BC的长 A

C

例4:如图,平行四边形ABCD中,4个内角平分线围成的四边形PQRS是矩形吗?说说你的理由。

例5:已知:如图,菱形ABCD的周长为8cm,∠ABC:

∠BAD=1:2,对角线AC、BD相交于点O,求AC的长及菱形

的面积。

例6:如图,在四边形ABCD中,AD∥BC,对角线AC的垂直平分线与边AD、BC分别相交于点E

、F。四边形AFCE是菱形吗?为什么?

例7:如图,在⊿ABC中,∠C=90

°,∠BAC、∠ABCE F C

⊥BC于E,DF⊥AC于F。问四边形CFDE是正方形吗?请说明理由。

例8:如图,C是线段AB上一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和BCFG,连接AF、BD.

⑴AF与BD是否相等?为什么?

⑵如果点C在线段AB的延长线上,⑴中的结论是否成立?请作图,并说明理由.

三、作业: 1、如图,矩形ABCD中,AE平分∠BAD,交BC于E,对角线AC、BD交于O,若∠OAE=15°。(1)试说明:OB=BE;(2)求∠BOE的度数.

B E C D

2、如图,将矩形ABCD沿着直线BD折叠使点C落在点 C

'处,BC'交AD于 E,AD=8,AB=4,求△BED的面积。

3、已知:如图,△ABC中,∠ACB=90°,CD是高,

AE是角平分线,交CD于点F,

EG⊥AB,G为垂足。试说明四边形

CEGF是菱形。

三角形、梯形的中位线 B C D

一、知识点:

1、三角形的中位线:三角形中位线的性质

2、梯形的中位线:⑵梯形中位线的性质

二、举例:

例1:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、、DA的中点。四边形EFGH是平行四边形吗?为什么?

例2:如图,矩形ABCD的对角线相交于点O,点E、F、G、H分别是OA、OB、OC、DO的中点,四边形EFGH是矩形吗?为什么?

A

GCD 例3:已知:如图,AD是△ABC的中线,E、G分别是AB、AC的中点,GF∥AD交ED的延长线于点F。

⑴猜想:EF与AC有怎样的关系?

⑵试证明你的猜想。

例4:已知在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点。试说明DM=1AB 2例5:等腰梯形ABCD中,AD∥BC,EF为中位线,EF=18,AC⊥AB,∠B=60°,求梯形ABCD的周长及面积。

例6、已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,E是梯形外一点,且AE=BE,

F是CD

BC。

BC

例7:如图,在梯形ABCD中,AD∥BC,M、N分别是两条对角线BD

AC的中点,试说明:MN∥BC且MN=1(BC-AD)。 2

例8:已知:如图,四边形ABCD为等腰梯形,

AD∥BC,AC、BD相交于点O,点P、Q、

R分别为AO、BO、CD的中点,且∠AOD=60°。试判断ΔPQR的形状,并说明理由?

C

B

ARD

三、作业:

C

1、已知:如图,在△ABC中,D是AB的中点,DE∥BC交AC于点E。

试说明:DE=

2、已知:如图,在△ABC中,中线BD、CE相交于点O,F、G分别是OB、OC的中点。 试说明:四边形DEFG是平行四边形。

3、已知:如图矩形ABCD的对角线相交于点O,E、F分别是OA、OD的中点。 试说明:四边形CBEF是等腰梯形。

4、已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E、F、M、N分别是AD、BC、BD、AC的中点。试说明:EF与MN互相垂直平分。

1

BC。 2

D

C

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com