haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

代数几何综合

发布时间:2013-09-20 16:07:28  

数学题_数学网 http://www.qzwh.com

2013中考全国120份试卷分类汇编

代数几何综合

1、(2013年潍坊市压轴题)如图,抛物线y?ax?bx?c关于直线x?1对称,与坐标轴交于A、B、C三点,且AB?4,点D?2?在抛物线上,直线是一次函数2?

?3?2?

y?kx?2?k?0?的图象,点O是坐标原点.

(1)求抛物线的解析式;

(2)若直线平分四边形OBDC的面积,求k的值.

(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于M、N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由

.

答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),

?a?b?c?0由点D(2,1.5)在抛物线上,所以?,所以3a+3b=1.5,即a+b=0.5, 4a?2b?c?1.5?

b13?1,即b=-2a,代入上式解得a=-0.5,b=1,从而c=1.5,所以y??x2?x?. 2a22

13(2)由(1)知y??x2?x?,令x=0,得c(0,1.5),所以CD//AB, 22

73令kx-2=1.5,得l与CD的交点F(,), 2k2

2令kx-2=0,得l与x轴的交点E(,0), k又?

根据S四边形OEFC=S四边形EBDF得:OE+CF=DF+BE, 272711??(3?)?(2?),解得k?, k2kk2k5

131(3)由(1)知y??x2?x???(x?1)2?2, 222即:

所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为y?

?12x 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

假设在y轴上存在一点P(0,t),t>0,使直线PM与PN关于y轴对称,过点M、N分别向y轴作垂线MM1、NN1,垂足分别为M1、N1,因为∠MPO=∠NPO,

所以Rt△MPM1∽Rt△NPN1, 所以MM1PM1?,………………(1) NN1PN1

?xMt?yM?,又yM =k xM-2, yN=k xN-2, xNt?yN

12x中,整理得x2+2kx-4=0, 2不妨设M(xM,yM)在点N(xN,yN)的左侧,因为P点在y轴正半轴上, 则(1)式变为所以(t+2)(xM +xN)=2k xM xN,……(2) 把y=kx-2(k≠0)代入y??

所以xM +xN=-2k, xM xN=-4,代入(2)得t=2,符合条件,

故在y轴上存在一点P(0,2),使直线PM与PN总是关于y轴对称.

考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.

点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。

2、(绵阳市2013年)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A(-1,0),直线l:x=m(m

>1)与x轴交于D。 (1)求二次函数的解析式和B的坐标;

(2)在直线l上找点P(P在第一象限),使得以P、

D、B为顶点的三角形与以B、C、O为顶点的三角形

相似,求点P的坐标(用含m的代数式表示);

(3)在(2)成立的条件下,在抛物线上是否存在第

一象限内的点Q,使△BPQ是以P为直角顶点的等腰

直角三角形?如果存在,请求出点Q的坐标;如果不

存在,请说明理由。

解:(1)①二次函数y=ax2+bx+c图象的顶点C的坐

b标为(0,-2),c = -2 , - = 0 , b=0 , 2a

点A(-1,0)、点B是二次函数y=ax2-2 的图象与x轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x2-2;

②点B与点A(-1,0)关于直线x=0对称,点B的坐标为(1,0);

(2)∠BOC=∠PDB=90o,点P在直线x=m上,

设点P的坐标为(m,p), OB=1, OC=2, DB= m-1 , DP=|p| ,

OBDP1|p|m-11- m①当△BOC∽△PDB时,= ,= 或p = ,

OCDB2m-122

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

m-11- m点P的坐标为(m,)或(m,); 22

②当△BOC∽△BDP时, OBDB1m-1= ,= ,p=2m-2或p=2-2m, OCDP2|p|

点P的坐标为(m,2m-2)或(m,2-2m);

m-11- m综上所述点P的坐标为(m,)、(m,)、(m,2m-2)或(m,2-2m); 22

(3)不存在满足条件的点Q。

点Q在第一象限内的抛物线y=2x2-2上,

令点Q的坐标为(x, 2x2-2),x>1, 过点Q作QE⊥直线l ,

垂足为E,△BPQ为等腰直角三角形,PB=PQ,∠PEQ=∠PDB,

∠EPQ=∠DBP,△PEQ≌△BDP,QE=PD,PE=BD,

m-1① 当P的坐标为(m,)时, 2

m-1m-x =

,2m-11 2x2-2- 22

与x>1矛盾,此时点Q不满足题设条件;

1- m② 当P的坐标为(m, )时, 2

m-12x-m= 29

1- m52x2-2- 26

与x>1矛盾,此时点Q不满足题设条件;

③ 当P的坐标为(m,2m-2)时,

92

522

与x>1矛盾,此时点Q不满足题设条件;

④当P的坐标为(m,2-2m)时,

518

72x26

与x>1矛盾,此时点Q不满足题设条件;

综上所述,不存在满足条件的点Q。

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

3、

(2

013

?昆

题)

图,

OA

BC

xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.

(1)求抛物线的解析式;

(2)求点D的坐标;

(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

4、(2013陕西)0)两点. (1)写出这个二次函数的对称轴;

(2)设这个二次函数的顶点为D,与y轴交于点C,

它的对称轴与x轴交于点E,连接AD、DE和DB, 当△AOC与△DEB相似时,求这个二次函数的表达式。 [提示:如果一个二次函数的图象与x轴的交点 为A(x1,0),B(x2,0)A,那么它的表达式可表示

为:y?a(x?x1)(x?x2)] (第24题图) 考点:此题在陕西的中考中也较固定,第(1)问主要考查待定

系数法求二次函数的解析式,二次函数与坐标轴的交点坐标,

抛物线的对称性等简单问题。第二问主要考查二次函数综合应用之点的存在性问题;包括最短距离与面积的最值等(等腰三角形,平行四边形,正方形,相似三角形,相似,全等等问题。考查问题的综合能力要求较高,基本上都是转化为求点的坐标的过程。

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

解析:本题中(1)由抛物线的轴对称性可知,与x轴的两个交点关于对称轴对称,易求出对称轴;

(2)由提示中可以设出函数的解析式,将顶点D与E的坐标表示出来,从而将两个三角形的边长表示出来,而相似的确定过程中充分考虑到分类即可解决此题;

解:(1)对称轴为直线:x=2。

(2)∵A(1,0)、B(3,0),所以设y?a(x?1)(x?3)即y?ax?4ax?3a 2

当x=0时,y=3a,当x=2时,y=?a

∴C(0,3a),D(2,-a) ∴OC=|3a|,

∵A(1,0)、E(2,0),

∴OA=1,EB=1,DE=}-a|=|a|

在△AOC与△DEB中,

∵∠AOC=∠DEB=90° ∴当AODE时,△AOC∽△DEB ?OCEB

∴1|a|33时,解得a?或a?? ?33|3a|1AOEB时,△AOC∽△BED ?OCDE11时,此方程无解, ?|3a||a|

综上所得:所求二次函数的表达式为:

y?

32424x?x?或y??x?x?3 3333

5、(2013成都市压轴题)在平面直角坐标系中,已知抛物线y??12x?bx?c(b,c为常2

数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限。

(1)如图,若该抛物线过A,B两点,求抛物线的函数表达式;

(2)平(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.

i)若点M在直线AC下方,且为平移前(1)中的抛物线上点,当以M,P,Q三点为顶点的三角形是等腰三角形时,求出所有符合条件的M的坐标;

ii)取BC的中点N,连接NP,BQ。试探究PQ是否存在最大值?若存在,求NP?BQ

出该最大值;所不存在,请说明理由。

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

解析:

(1)A(0,-1) C(4,3) 则|AC|

?ABC为等腰直角三角形 ∴AB=BC=4

∴B点(4,-1)将A,B代入抛物线方程有

c??1??c??1?? ??1??16?4b?c??1?b?2??2

∴y??12x?2x?1 2

(2)当顶点P在直线AC上滑动时,平移后抛物线与AC另一交点Q就是A点沿直线AC滑动同样的单位。下面给予证明:

121(x?4x?4)?1??(x?2)2?1 顶点P为(2,1) 22

12设平移后顶点P为(a,a-1),则平移后抛物线y???(x?a)?a?1 联立y=x-1(直线AC方2 原抛物线y??

程)

得Q点为(a-2,a-3)

∴|PQ|

=即实际上是线段AP在直线AC上的滑动.

ⅰ)点M在直线AC下方,且M,P,Q构成等腰直角三角形,那么先考虑使MP,Q构成等腰直角三角形的M点的轨迹,再求其轨迹与抛物线的交点以确定M点.

①若∠M为直角,则M点轨迹即为AC下方距AC为MH且与AC平行的直线l 又知|PQ|

=,则|MH|

|PM|=2

直线l即为AC向下平移|PM|=2个单位 L:y=x-3 联立y??

得x=1

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

12x?2x?1 2

数学题_数学网 http://www.qzwh.com

M点为(

)或(

②若∠P=或∠Q为直角,即PQ为直角边,MQ⊥PQ且,

MQ=PQ=或MP⊥PQ,且

MP=PQ=∴M点轨迹是AC下方距AC

为AC平行直线L 直线L即为AC向下平移|MP|=4个单位

L:y=x-5 联立y??12x?2x?1得x=4或x=-2 2

∴M点为(4,-1)或(-2,-7)

综上所有符合条件的点M为(

)(4,-1);(

),(-2,-7)

ⅱ)知

PQ= PQ有最大值,即NP+BQ有最小值 MP?BQ

如下图,取AB中点M,连结QM,NM,知N为中点

∴MN为AC边中位线,∴MN∥AC且MN=

∴MN?PQ ∴MNPQ为平行四边形

即PN=QM ∴QB+PN=BQ+MQ

此时,作B点关于AC对称的点B′,连B?Q,B?M 1AC=2

B?M交AC于点H,易知B?Q=BQ

∴BQ+PN=B?Q+MQ≥B?M(三角形两边之和大于第三边)

仅当Q与H重合时,取等号

即BQ+PN最小值存在 且最小值为B?M

连结A?B知?ABB?为等腰直角三角形。

1A?B=4,AM=AB=2

∴由勾股定理得B?M? 2

∴PQ?NP?

BQ数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

6、(2013山西压轴题,26,14分)(本题14分)综合与探究:如图,抛物线y=123x-x-442

与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q

(1)求点A,B,C的坐标。

(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。

(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。

解析:(1)当y=0时,123x-x-4=0,解得,x1=-2,x2=8 42

∵点B在点A的右侧,

∴点A,B的坐标分别为:(-2,0),(8,0)

当x=0时,y=-4

∴点C的坐标为(0,-4),

(2)由菱形的对称性可知,点D的坐标为(0,4).

ì1?b=4设直线BD的解析式为y=kx+b,则í.解得,k=-,b=4. 2??8k+b=0

∴直线BD的解析式为y=-1x+4. 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

∵l⊥x轴,∴点M,Q的坐标分别是(m,-113m+4),(m,m2-m-4) 242

如图,当MQ=DC时,四边形CQMD是平行四边形. ∴(-113m+4)-(m2-m-4)=4-(-4) 242

化简得:m2-4m=0.解得,m1=0,(舍去)m2=4.

∴当m=4时,四边形CQMD是平行四边形.

此时,四边形CQBM是平行四边形.

解法一:∵m=4,∴点P是OB中点.∵l⊥x轴,∴l∥y轴.

∴△BPM∽△BOD.∴BPBM1==.∴BM=DM. BOBD2

∵四边形CQMD是平行四边形,∴DMCQ∴BMCQ.∴四边形CQBM为平行四边形. 解法二:设直线BC的解析式为y=k1x+b1,则íì1?b1=-4.解得,k1=,b1=-4 2??8k1+b1=0

∴直线BC的解析式为y=1x-4 2

又∵l⊥x轴交BC于点N.∴x=4时,y=-2. ∴点N的坐标为(4,-2)由上面可知,点M,Q的坐标分别为:(4,2),Q(4,-6).

∴MN=2-(-2)=4,NQ=-2-(-6)=4.∴MN=QN.

又∵四边形CQMD是平行四边形.∴DB∥CQ,∴∠3=∠4,

又∠1=∠2,∴△BMN≌△CQN.∴BN=CN.

∴四边形CQBM为平行四边形.

(3)抛物线上存在两个这样的点Q,分别是Q1(-2,0),Q2(6,-4).

7、(2013?内江)如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;

(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;

(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

8、(2013?新疆压轴题)如图,已知抛物线y=ax+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3)

(1)求抛物线的解析式;

(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;

(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

9、(2013凉山州压轴题)如图,抛物线y=ax﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(

0,4),以OC、OA为边作矩形OADC交抛物线于点G.

(1)求抛物线的解析式;

(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;

(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由. 2

考点:二次函数综合题.

分析:(1)将A(3,0),C(0,4)代入y=ax﹣2ax+c,运用待定系数法即可求出抛物线的解析式; 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长;

(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状. 解答:解:(1)∵抛物线y=ax﹣2ax+c(a≠0)经过点A(3,0),点C(0,4), ∴,解得

22, ∴抛物线的解析式为y=﹣x+x+4;

(2)设直线AC的解析式为y=kx+b,

∵A(3,0),点C(0,4), ∴,解得,

∴直线AC的解析式为y=﹣x+4.

∵点M的横坐标为m,点M在AC上,

∴M点的坐标为(m,﹣ m+4),

2∵点P的横坐标为m,点P在抛物线y=﹣x+x+4上,

2∴点P的坐标为(m,﹣ m+m+4),

22∴PM=PE﹣ME=(﹣m+m+4)﹣(﹣m+4)=﹣m+4m,

2即PM=﹣m+4m(0<m<3);

(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,PF=﹣m+m+4﹣4=﹣m+m.

若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,

2即(﹣m+m):(3﹣m)=m:(﹣ m+4),

∵m≠0且m≠3,

m=. 22

∵△PFC∽△AEM,∴∠PCF=∠AME,

∵∠AME=∠CMF,∴∠PCF=∠CMF.

在直角△CMF中,∵∠CMF+∠MCF=90°,

∴∠PCF+∠MCF=90°,即∠PCM=90°,

∴△PCM为直角三角形;

②若△CFP∽△AEM,则CF:AE=PF:EM,

2即m:(3﹣m)=(﹣m+m):(﹣m+4),

∵m≠0且m≠3,

∴m=1.

∵△CFP∽△AEM,∴∠CPF=∠AME,

∵∠AME=∠CMF,∴∠CPF=∠CMF.

∴CP=CM,

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

∴△PCM为等腰三角形.

综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为

角三角形或等腰三角形.

或1,△PCM为直

点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解.

10、(2013?曲靖压轴题)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于

A、B两点,过A、B两点的抛物线为y=﹣x+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.

(1)求抛物线的解析式.

(2)当DE=4时,求四边形CAEB的面积.

(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.

2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

11、(2013年临沂压轴题)如图,抛物线经过A(?1,0),B(5,0),C(0,?)三点.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. 5

2

2

(第26题图)

解析:解:(1)设抛物线的解析式为 y?ax?bx?c,

?

?a?b?c?0,?

根据题意,得?25a?5b?c?0,,

?5?c??.?2

1?

a?,?2?

解得?b??2,

?5?c??.

2?

∴抛物线的解析式为:y?

'

(第26题图)

125

x?2x?. ………(3分) 22

(2)由题意知,点A关于抛物线对称轴的对称点为点B,连接BC交抛物线的对称轴于点

P,则P点 即为所求.

设直线BC的解析式为y?kx?b,

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

1?k?,?5k?b?0,???2由题意,得?解得 ? 5b??.??b??5.?2??2

∴直线BC的解析式为y?

∵抛物线y?15x?. …………(6分) 22125x?2x?的对称轴是x?2, 22

153∴当x?2时,y?x???. 222

3∴点P的坐标是(2,?). …………(7分) 2

(3)存在 ??????????(8分)

(i)当存在的点N在x轴的下方时,如图所示,∵四边形ACNM是平行四边形,∴CN∥x轴,

∴点C与点N关于对称轴x=2对称,∵C点的坐标为(0,?),∴点N的坐标为5

2

5(4,?). ?????????(11分) 2

(II)当存在的点N在x轴上方时,如图所示,作NH?x轴于点H,∵四边形ACMN

是平行四边形,∴AC?MN,?NMH??CAO,

∴Rt△CAO ≌Rt△NMH,∴NH?OC.

∵点C的坐标为(0,?),?NH?

∴'''''''''''52'55,即N点的纵坐标为, 221255x?2x??,即x2?4x?10?0

222

解得x1?2x2?2

∴点N

的坐标为(2

)和(2).

综上所述,满足题目条件的点N共有三个, 分别为(4,?

).,(2?

),(2) ?????????(13分) '52525

25252

12、(2013?宁波压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,

4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

(1)求直线AB的函数解析式;

(2)当点P在线段AB(不包括A,B两点)上时.

①求证:∠BDE=∠ADP;

②设DE=x,DF=y.请求出y关于x的函数解析式;

(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

13、(2013四川南充压轴题,21,8分)如图,二次函数y=x2+bx-3b+3的图象与x轴交于

A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).

(1)求这条抛物线的解析式;

(2)⊙M过A、B、C三点,交y轴于另一点D,求点

M的坐标;

(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.

解析:(1)把点(b-2,2b2-5b-1)代入解析式,得

2b2-5b-1=(b-2)2+b(b-2)-3b+3, ?????1′

解得b=2.

∴抛物线的解析式为y=x2+2x-3. ?????2′

(2)由x2+2x-3=0,得x=-3或x=1.

∴A(-3,0)、B(1,0)、C(0,-3).

抛物线的对称轴是直线x=-1,圆心M在直线x=-1上. ?????3′

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

∴设M(-1,n),作MG⊥x轴于G,MH⊥y轴于H,连接MC、MB.

∴MH=1,BG=2. ?????4′ ∵MB=MC,∴BG2+MG2=MH2+CH2,

即4+n2=1+(3+n)2,解得n=-1,∴点M(-1,-1) ?????5′

(3)如图,由M(-1,-1),得MG=MH.

∵MA=MD,∴Rt△AMG≌RtDMH,∴∠1=∠2.

由旋转可知∠3=∠4. ∴△AME≌△DMF.

若△DMF为等腰三角形,则△AME为等腰三角形. ?????6′ 设E(x,0),△AME为等腰三角形,分三种情况:

①AE=AM=,则x=-3,∴E(-3,0);

②∵M在AB的垂直平分线上,

∴MA=ME=MB,∴E(1,0) ?????7′ ③点E在AM的垂直平分线上,则AE=ME.

AE=x+3,ME2=MG2+EG2=1+(-1-x)2,∴(x+3)2=1+(-1-x)2,解得x=?(?7,0). 4

7,0) ?????8′ 47,∴E4∴所求点E的坐标为(-3,0),(1,0),(?

14、(2013四川宜宾压轴题)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.

(1)请直接写出抛物线y2的解析式;

(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;

(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

考点:二次函数综合题.

专题:代数几何综合题.

分析:(1)写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可;

(2)根据抛物线解析式求出点A、B的坐标,然后求出∠OBA=45°,再联立两抛物线解析式求出交点C的坐标,再根据∠CPA=∠OBA分点P在点A的左边和右边两种情况求解;

(3)先求出直线OC的解析式为y=x,设与OC平行的直线y=x+b,与抛物线y2联立消掉y得到关于x的一元二次方程,再根据与OC的距离最大时方程有且只有一个根,然后利用根的判别式△=0列式求出b的值,从而得到直线的解析式,再求出与x轴的交点E的坐标,得到OE的长度,再过点C作CD⊥x轴于D,然后根据∠COD的正弦值求解即可得到h的值.

解答:解:(1)抛物线y1=x2﹣1向右平移4个单位的顶点坐标为(4,﹣1), 所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;

(2)x=0时,y=﹣1,

y=0时,x2﹣1=0,解得x1=1,x2=﹣1,

所以,点A(1,0),B(0,﹣1),

∴∠OBA=45°, 联立, 解得,

∴点C的坐标为(2,3),

∵∠CPA=∠OBA,

∴点P在点A的左边时,坐标为(﹣1,0),

在点A的右边时,坐标为(5,0),

所以,点P的坐标为(﹣1,0)或(5,0);

(3)存在.

∵点C(2,3),

∴直线OC的解析式为y=x,

设与OC平行的直线y=x+b,

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

联立,

消掉y得,2x2﹣19x+30﹣2b=0,

当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,

此时x1=x2=×(﹣

此时y=()=, ,

,﹣),使得△QOC中OC边上的高h有最大值, ﹣4)2﹣1=﹣∴存在第四象限的点Q(此时△=192﹣4×2×(30﹣2b)=0,

解得b=﹣,

, ∴过点Q与OC平行的直线解析式为y=x﹣

令y=0,则x﹣=0,解得x=,

,0), 设直线与x轴的交点为E,则E(

过点C作CD⊥x轴于D,根据勾股定理,OC=则sin∠COD=解得h最大==×=, .

=,

点评:本题是二次函数综合题型,主要考查了利用平移变换确定二次函数解析式,联立两函数解析式求交点坐标,等腰三角形的判定与性质,(3)判断出与OC平行的直线与抛物线只有一个交点时OC边上的高h最大是解题的关键,也是本题的难点.

15、(2013浙江丽水压轴题)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t

(1)当t?2时,求CF的长;

(2)①当t为何值时,点C落在线段BD上?

②设△BCE的面积为S,求S与t之间的函数关系式;

(3)如图2,当点C与点E重合时,△CDF沿x轴左右平移得到△C’D’F’,再将A,B,

C’,D’为顶点的四边形沿C’F’剪开,得到两个图形,用这两个图形拼成不重叠且

无缝隙的图形恰好是三角形,请直接写出所有符合上述条件的点C’的坐标。

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

16、(2013?自贡压轴题)如图,已知抛物线y=ax+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.

(1)求抛物线的解析式;

(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

17、(2013?自贡)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.

(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;

(2)在图②中,若AP1=2,则CQ等于多少?

(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

18、(2013?广安压轴题)如图,在平面直角坐标系xOy中,抛物线y=ax+bx+c经过A、B、C三点,已知点A(﹣3,0),B(

0,3),C(1,0).

(1)求此抛物线的解析式.

(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.

①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;

②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号) 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.

(1)求证:∠APE=∠CFP;

(2)设四边形CMPF的面积为S2,CF=x,.

①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;

②当图中两块阴影部分图形关于点P成中心对称时,求y的值.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

考点:四边形综合题.

分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;

(2)本问关键是求出y与x之间的函数解析式.

①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;

②注意中心对称、轴对称的几何性质.

解答:(1)证明:∵∠EPF=45°,

∴∠APE+∠FPC=180°﹣45°=135°;

而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°, 则∠CFP+∠FPC=180°﹣45°=135°,

∴∠APE=∠CFP.

(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,

∴△APE∽△CPF,则.

AB=, 而在正方形ABCD中,AC为对角线,则AC=又∵P为对称中心,则AP=CP=,

∴AE===.

如图,过点P作PH⊥AB于点H,PG⊥BC于点G,

P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.

S△APE

==×2×=,

∵阴影部分关于直线AC轴对称,

∴△APE与△APN也关于直线AC对称,

则S四边形AEPN=2S△APE=

而S2=2S△PFC=2×; =2x,

﹣2x, ∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣

y===+﹣1.

∵E在AB上运动,F在BC上运动,且∠EPF=45°,

∴2≤x≤4.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

令=a,则y=﹣8a+8a﹣1,当a=2=,即x=2时,y取得最大值.

而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.

∴y关于x的函数解析式为:

y=+﹣1(2≤x≤4),y的最大值为1.

②图中两块阴影部分图形关于点P成中心对称,

而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称, 则EB=BF,即AE=FC,

∴=x,解得x=,

代入x=,得y=﹣2.

点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.

20、(2013?衢州压轴题)在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.

(1)当点P移动到点D时,求出此时t的值;

(2)当t为何值时,△PQB为直角三角形;

2(3)已知过O、P、Q三点的抛物线解析式为y=﹣(x﹣t)+t(t>0).问是否存在某一时

刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

21、(2013?绍兴压轴题)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

(1)求点B及点D的坐标.

(2)连结BD,CD,抛物线的对称轴与x轴交于点E.

①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.

②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

22、(2013?嘉兴压轴题)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)﹣m+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;

(2)求DE的长?

(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形? 22

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

23、(2013?巴中压轴题)如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.

(1)求经过A、B、C三点的抛物线所对应的函数解析式;

(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;

(3)试说明直线MC与⊙P的位置关系,并证明你的结论.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

24、(2013?烟台压轴题)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,

2二次函数y=ax+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣

2,0),以0C为直径作半圆,圆心为D. 3

(1)求二次函数的解析式;

(2)求证:直线BE是⊙D的切线;

(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

25、(2013菏泽压轴题)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.

(1)试求b,c的值,并写出该二次函数表达式;

(2)动点P从A到D

,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?

②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

考点:二次函数综合题.

分析:(1)根据一次函数解析式求出点A.点C坐标,再由△ABC是等腰三角形可求出点B坐标,根据平行四边形的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式.

(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO,利用对应边成比例可求出t的值,继而确定点P的位置;

②只需使△APQ的面积最大,就能满足四边形PDCQ的面积最小,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO,利用对应边成比例得出h的表达式,继而表示出△APQ的面积表达式,利用配方法求出最大值,即可得出四边形PDCQ的最小值,也可确定点P的位置.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

解答:解:(1)由y=﹣x+3,

令x=0,得y=3,所以点A(0,3);

令y=0,得x=4,所以点C(4,0),

∵△ABC是以BC为底边的等腰三角形,

∴B点坐标为(﹣4,0),

又∵四边形ABCD是平行四边形,

∴D点坐标为(8,3),

将点B(﹣4,0)、点D(8,3)代入二次函数y=x+bx+c,可得2, 解得:,

2故该二次函数解析式为:y=x﹣x﹣3.

(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t, ∵PQ⊥AC,

∴△APQ∽△CAO, ∴=,即=

个单位长度处,有PQ⊥AC. , 解得:t=即当点P运动到距离A点

②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,

∴当△APQ的面积最大时,四边形PDCQ的面积最小,

当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,

设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO可得: =解得:h=(5﹣t),

∴S△APQ=t×(5﹣t)=(﹣t+5t)=﹣2, (t﹣)+2,

=,

∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

点评:本题考查了二次函数的综合,涉及了待定系数法求函数解析式、平行四边形的性质、相似三角形的判定与性质,解答本题的关键是找到满足题意时的相似三角形,利用对应边成比例的知识得出有关线段的长度或表达式,难度较大.

26、(2013?包头压轴题)已知抛物线y=x﹣3x﹣的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.

(1)求点A、B、C、D的坐标;

(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;

(3)取点E(﹣,0)和点F(0,﹣),直线l经过E、F两点,点G是线段BD的中点. ①点G是否在直线l上,请说明理由;

②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.

2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

27、(2013?株洲压轴题)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、

2B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m(m>0).

(1)求抛物线C1的解析式的一般形式;

(2)当m=2时,求h的值;

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

28、(2013?娄底)已知:一元二次方程x+kx+k﹣=0.

(1)求证:不论k为何实数时,此方程总有两个实数根;

(2)设k<0,当二次函数y=x+kx+k﹣的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式; 22

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

29、(2013?张家界压轴题)如图,抛物线y=ax+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.

(1)求直线CD的解析式;

(2)求抛物线的解析式;

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO

(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

30、(2013?衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.

(1)求抛物线对应的函数关系式;

(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.

①当t为何值时,四边形OMPQ为矩形;

②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

31、(2013?郴州压轴题)如图,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系.抛物线顶点为A,且经过点C.点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QD⊥OC交BC于点D,OD所在直线与抛物线在第一象限交于点E.

(1)求抛物线的解析式;

(2)点E′是E关于y轴的对称点,点Q运动到何处时,四边形OEAE′是菱形?

(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PB∥OD?

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

,),对称轴为 32、(2013?常德)如图,已知二次函数的图象过点A(0,﹣3),B(

直线x=﹣,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.

(1)求此二次函数的解析式;

(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;

(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

33、(2013?孝感压轴题)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.

(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);

(2)如图2,若点E在线段BC上滑动(不与点B,C重合).

①AE=EF是否总成立?请给出证明;

2②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x+x+1上,

求此时点F的坐标.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

34、(2013?咸宁压轴题)如图,已知直线y=x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.

(1)点C的坐标是 (0,3) 线段AD的长等于 4 ;

2(2)点M在CD上,且CM=OM,抛物线y=x+bx+c经过点G,M,求抛物线的解析式;

(3)如果点E在y轴上,且位于点C的下方,点

F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

35、(2013?十堰压轴题)已知抛物线y=x﹣2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).

(1)求D点的坐标;

(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;

(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标. 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

36、(2013?恩施州压轴题)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0

).

(1)求直线BD和抛物线的解析式.

(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.

(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

37、(2013?鄂州压轴题)在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).

(1)若M(﹣2,5),请直接写出N点坐标.

(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.

(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.

(4)在(3)问条件下,动点P从B点出发,沿x

轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

38、(2013?遵义压轴题)如图,已知抛物线y=ax+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).

(1)求抛物线的解析式及A,B两点的坐标;

(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;

(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式. 2

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

39、(2013?黔西南州压轴题)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C

(1)求抛物线的函数解析式.

(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点

D的坐标.

(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

40、(13年北京8分25)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。

已知点D(11,),E(0,-2),F(2,0) 22

(1)当⊙O的半径为1时,

①在点D,E,F中,⊙O的关联点是__________;

②过点F作直线交

y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;

(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围。

解析:【解析】(1) ①D、E;

② 由题意可知,若P点要刚好是圆C的关联点;

需要点P到圆C的两条切线PA和PB之间所夹

的角度为60?;

由图1可知?APB?60?,则?CPB?30?,

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

BC

?2BC?2r;

sin?CPB

∴若P点为圆C的关联点;则需点P到圆心的距离d满足0?d?2r;

由上述证明可知,考虑临界位置的P点,如图2;

点P到原点的距离OP?2?1?2; 过O作x轴的垂线OH,垂足为H;

OF2Btan?OGF???3; OG2

C∴?OGF?60?;

连接BC,则PC?∴OH?OG?sin60??3;

图1

OH; ?

OP2

∴?OPH?60?;

∴sin?OPH?

易得点P1与点G重合,过P2作P2M?x轴于点M; 易得?P2OM?30?; ∴OM?OP2?cos30??;

从而若点P为圆O的关联点,则P点必在线段P1P2上; ∴0?m?;

(2) 若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小, 则这个圆的圆心应在线段EF的中点; 考虑临界情况,如图3; 即恰好E、F点为圆K的关联时,则KF?2KN?EF?2; ∴此时r?1;

故若线段EF上的所有点都是某个圆的关联点,

这个圆的半径r的取值范围为r?1.

12

【点评】“新定义”问题最关键的是要能够把“新定义”转化为自己熟悉的知识,通过第(2)问开

头部分的解析,可以看出本题的“关联点”本质就是到圆心的距离小于或等于2倍半 径的点.

了解了这一点,在结合平面直角坐标系和圆的知识去解答就事半功倍了.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_

数学网 http://www.qzwh.com

考点:代几综合(“新定义”、特殊直角三角形的性质、圆、特殊角三角形函数、数形结合)

41、(2013年深圳市)如图6-1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y??12x?bx?c经过C、B两点,与x轴的另一交2

点为D。

(1)点B的坐标为( , ),抛物线的表达式为

(2)如图6-2,求证:BD//AC

(3)如图6-3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长。

解析:

数学题_

数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

42、(2013?钦州压轴题)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x+2x与x轴相交于O、B,顶点为A,连接OA.

(1)求点A的坐标和∠AOB的度数;

(2)若将抛物线y=x+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;

(3)在(2)的情况下,判断点C′是否在抛物线y=x+2x上,请说明理由;

(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

222

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

轴交于点C(0,3).

(1)求抛物线的解析式;

(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点

P的坐标;若不存在,请说明理由;

(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.

考点:二次函数综合题.

专题:压轴题.

分析:(1)由于A(﹣1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故设一般式解答和设交点式(两点式)解答均可.

(2)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.

(3)根据抛物线上点的坐标特点,利用勾股定理求出相关边长,再利用勾股定理的逆定理判断出直角梯形中的直角,便可解答.

解答:解:(1)∵抛物线与y轴交于点C(0,3),

2∴设抛物线解析式为y=ax+bx+3(a≠0),

根据题意,得

解得,

2, ∴抛物线的解析式为y=﹣x+2x+3.

(2)存在.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

由y=﹣x+2x+3得,D点坐标为(1,4),对称轴为x=1.

①若以CD为底边,则PD=PC,

设P点坐标为(x,y),根据两点间距离公式,

2222得x+(3﹣y)=(x﹣1)+(4﹣y),

即y=4﹣x.

又P点(x,y)在抛物线上,

∴4﹣x=﹣x+2x+3,

2即x﹣3x+1=0,

解得x1=

∴x=

∴y=4﹣x=

即点P坐标为, , . ,x2=<1,应舍去, 22

②若以CD为一腰,

∵点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称, 此时点P坐标为(2,3).

∴符合条件的点P坐标为或(2,3).

(3)由B(3,0),C(0,3),D(1,4),根据勾股定理,

得CB=,CD=,BD=,

222∴CB+CD=BD=20,

∴∠BCD=90°,

设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,在Rt△DCF中, ∵CF=DF=1,

∴∠CDF=45°,

由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3),

∴DM∥BC,

∴四边形BCDM为直角梯形,

由∠BCD=90°及题意可知,

以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;

以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在.

综上所述,符合条件的点M的坐标为(2,3).

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

数学题_数学网 http://www.qzwh.com

点评:此题是一道典型的“存在性问题”,结合二次函数图象和等腰三角形、等腰梯形的性质,考查了它们存在的条件,有一定的开放性.

数学题_数学网 www.qzwh.com 课件、教案、试卷,全免费下载

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com