haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

初三数学二次函数的应用题(飞跃)

发布时间:2013-12-08 09:29:38  

2013-12-8

初三数学二次函数的应用题

1. (2011?江苏徐州)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件.

(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)件的函数关系式;

(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?

2、(2011江苏无锡)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).

(1)求y与x之间的函数关系式;

(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?

3.(2011?南充)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:

(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?

(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?

2013-12-8

4、(2011辽宁沈阳)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).

(1)用含x的代数式表示,今年生产的这种玩具每件的成本为 元,今年生产的这种玩具每件的出厂价为 元.

(2)求今年这种玩具的每件利润y元与x之间的函数关系式.

(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?

注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.

5、 (2011湖北鄂州)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P??12?x?60??41(万元).当地政府拟在“十二?100

五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销

2013-12-8

售的投资收益为:每投入x万元,可获利润Q??992942?10?x???100?x??160(万元) 1005

⑴若不进行开发,求5年所获利润的最大值是多少?

⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?

⑶根据⑴、⑵,该方案是否具有实施价值?

1、解答:解:(1)y=(80﹣60+x)(300﹣10x)

2=﹣10x+100x+6000;

2(2)y=﹣10x+100x+6000,

2=﹣10(x﹣5)+6250,

∵a=﹣10<0,

∴当x=5时,y有最大值,其最大值为6250,

即单价定为85元时,每月销售该商品的利润最大,最大利润为6250元.

2、解答:解:(1)根据图象可知当x≤20时,

y=8000(0<x≤20),

当20<x≤40时,

将B(20,8000),C(40,4000),代入y=kx+b,得:

?8000?20k?b?k??200,解得:, ??4000?40k?bb?12000??

y=﹣200x+12000(20<x≤40);

(2)根据上式以及老王种植水果的成本是2 800元/吨,

根据题意得:当x≤20时,

W=(8000﹣2800)x=5200x,

y随x的增大而增大,当x=20时,W最大=5200×20=104000元,

当20<x≤40时,

2W=(﹣200x+12000﹣2800)x=﹣200x+9200x,

当x=﹣b=23时, 2a

4ac?b2

W最大==105800元. 4a

故张经理的采购量为23吨时,老王在这次买卖中所获的利润W最大,最大利润是105800元. 3:解:(1)工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为:

y=kx+b.(1分)

该函数图象过点(0,300),(500,200),

2013-12-8

?500k?b?200∴?, b?300?

1?k???解得?5. ??b?300

∴y=﹣1x+300(x≥0). 5

1×600+300=180(元/千度). 5当电价x=600元/千度时,该工厂消耗每千度电产生利润y=﹣

(2)设工厂每天消耗电产生利润为w元,由题意得:

W=my=m(﹣11x+300)=[m﹣(10m+500)+300].(5分) 55

2化简配方,得:w=﹣2(m﹣50)+5000.(6分)

由题意,m≤60,

∴当m=50时,w最大=5000,

即当工厂每天消耗50千度电时,工厂每天消耗电产生利润为5000元.(8分)

4解答:解(1)10+7x;12+6x;

(2)y=(12+6x)﹣(10+7x),

∴y=2﹣x (0<x<2);

(3)∵W=2(1+x)?y

=﹣2(1+x)(x﹣2)

2=﹣2x+2x+4,

2∴W=﹣2(x﹣0.5)+4.5

∵﹣2<0,0<x≤11,

∴W有最大值,

∴当x=0.5时,W最大=4.5(万元).

答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.

5、【答案】解:⑴当x=60时,P最大且为41,故五年获利最大值是41×5=205万元.

⑵前两年:0≤x≤50,此时因为P随x增大而增大,所以x=50时,P值最大且为40万元,所以这两年获利最大为40×2=80万元.

后三年:设每年获利为y,设当地投资额为x,则外地投资额为100-x,所以y=P+Q =??22?1?992294?2?x?30?1065,表明?x?x?160?x?60x?165+==???x?60??41????5??100??100

x=30时,y最大且为1065,那么三年获利最大为1065×3=3495万元,

故五年获利最大值为80+3495-50×2=3475万元.

⑶有极大的实施价值.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com