haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

在平面直角坐标系中

发布时间:2013-12-10 13:24:10  

在平面直角坐标系中,点A、B分别在x轴、y 轴上,线段OA、OB

的长(OA<OB)是关于x的方程x2-(2m+6)x+2m2=0的两个实数根,C是线段AB的中点,OC=3 5

,D在线段OC上,OD=2CD.

(1)求OA、OB的长;

(2)求直线AD的解析式;

(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

考点:一次函数综合题;待定系数法求一次函数解析式;勾股定理;平行线分线段成比例.

专题:计算题;压轴题.

分析:(1)求出AB=2OC=6

5

,根据OA+OB=2m+6,OA×OB=2m2,得出方程(2m+6)2-4m2=180,求出m的值,代入方程,求出方程的解即可;

(2)过C作CM⊥OA于M,过D作DN⊥OA于N,求出C、D的坐标,设直线AD的解析式是y=kx+b,把A、D的坐标代入求出即可;

(3)求出AD与y轴的交点F的坐标,求出AF,①以OA为一边时,共有4个点,根据A坐标和OP=OA即可求出R、T的坐标,K(3

2

,-3

2

),同理求出G、K的坐标;②以OA为对角线,作OA的垂直平分线交AD于P,交OA于M,在OA的下方作MP=MQ,把x=3代入y=-x+6求出y,即可得出此时Q的坐标.

解答:解:(1)∵AB=2OC=6

5

∴OA2+OB2=AB2=(6

5

)2=180,

∵OA+OB=2m+6,OA×OB=2m2,

∴(OA+OB)2-2OA×OB=180,

即(2m+6)2-4m2=180,

∴m=6,

即方程为x2-18x+72=0,

∴x1=12,x2=6,

∵OA<OB,

∴OA=6,OB=12.

(2)过C作CM⊥OA于M,过D作DN⊥OA于N,∵CM∥OB,

CM

OB

=

AC

AB

=

AM

OA

=

1

2

∵OA=6,OB=12,

∴CM=6,AM=3,OM=3,

∴C(3,6),

∵OD=2CD,

DN

CM

=

OD

OC

=

ON

OM

=

2 3 ,

∴DN=4,ON=2,

∴D(2,4),

设直线AD的解析式是y=kx+b, ∵A(6,0),

代入得:

0=

6k+b

4=2k+b

解得:k=-1,b=6,

∴直线AD的解析式是y=-x+6.

(3)设直线y=-x+6交y轴于F, 把x=0代入y=-x+6得:y=6, ∴F(0,6),OF=6=OA, 由勾股定理得:AF=6

2

分为两种情况:

①以OA为一边时,如图,共有3个点,如图,AP=OA=AP′=6,RT∥OA∥K

G, 点Q在点T、K点时,以O、A、P(P′)、Q为顶点的四边形是菱形, ∵A(6,0),OP=OA,

∴OP=6=PR=PT,

∴此时Q的坐标是(6,6),

过P′作P′H⊥OA于H,

AP′=6,

由勾股定理得:P′H=AH=3

2

K(3

2

,-3

2

),

K点在直线AD上关于O点对称的点(-3

2

,3

2

)也可以.

②以OA为对角线,作OA的垂直平分线交AD于P,交OA于M,在OA的下方,MP=MQ,以O、A、P、Q为顶点的四边形是菱形,

把x=3代入y=-x+6得:y=3,

此时Q的坐标是(3,-3),

综合上述:P是直线AD上的点,在平面内存在点Q,使以O、A、P、Q为顶点的四边形是菱形,点Q的坐标是(6,6)或(3

2

,-3

2

)或(-3

2

,3

2

)或(3,-3).

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com