haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

一元一次方程知识点2

发布时间:2013-12-11 16:33:15  

一元一次方程单元复习与巩固 一、知识网络

二、目标认知

重点:

一元一次方程的解法,列方程解应用题

难点:

列方程解应用题

三、知识要点梳理 知识点一:一元一次方程及解的概念

1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释:

一元一次方程须满足下列三个条件:

(1) 只含有一个未知数;

(2) 未知数的次数是1次;

(3) 整式方程.

2、方程的解:

判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.

知识点二:一元一次方程的解法

1、方程的同解原理(也叫等式的基本性质)

等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释:

分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)

特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-

=1.6,将其化为: -=1.6。方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:

解一元一次方程的一般步骤

常用步骤

去分母 具体做法 在方程两边都乘以各分

母的最小公倍数

去括号 一般先去小括号,再去

中括号,最后去大括号

移项 把含有未知数的项都移

到方程的一边,其他项

都移到方程的另一边

(记住移项要变号)

合并同类项 把方程化成ax=

b(a≠0)的形式

系数化成1 在方程两边都除以未知

数的系数a,得到方程

的解x= 等式基本性质2 计算要仔细,分子分母勿颠倒 合并同类项法则 计算要仔细,不要出差错; 等式基本性质1 移项要变号,不移不变号; 依据 等式基本性质2 注意事项 防止漏乘(尤其整数项),注意添括号; 去括号法则、分配律 注意变号,防止漏乘;

要点诠释:

理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:

①a≠0时,方程有唯一解; ②a=0,b=0时,方程有无数个解;

③a=0,b≠0时,方程无解。

知识点三:列一元一次方程解应用题

1、列一元一次方程解应用题的一般步骤: (1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.

(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.

(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.

(4)解方程.

(5)检验,看方程的解是否符合题意.

(6)写出答案.

2、解应用题的书写格式:

设→根据题意→解这个方程→答。

3、常见的一些等量关系

常见列方程解应用题的几种类型:

类型

(1)和、差、倍、分问题 基本数量关系 ①较大量=较小量+多余

②总量=倍数×倍量

(2)等积变形问题

变形前后体积相等 等量关系 抓住关键性词语

(3)

题 相遇问题 路程=速度×时间 甲走的路程+乙走的路程=两地距离 追及问题 同地不同时出发:前者走的路程=追者走的路程 同时不同地出发:前者走的

路程+两地距离=追者所

走的路程

顺逆流问题 顺流速度=静水速度+水

流速度

逆流速度=静水速度-水

流速度 顺流的距离=逆流的距离

(4)劳力调配问题 从调配后的数量关系中找

相等关系,要抓住“相

等”“几倍”“几分之几”“多”“少”等关键词语

(5)工程问题 工作总量=工作效率×工

作时间 各部分工作量之和=1

(6)利润率问题 商品利润=商品售价-商

品进价

商品利润率=抓住价格升降对利润率的影响来考虑

×100%

售价=进价×(1+利润率)

(7)数字问题 设一个两位数的十位上的

数字、个位上的数字分别为

a,b,则这个两位数可表示

为10a+b

(8)储蓄问题 利息=本金×利率×期数 本息和=本金+利息=本

金+本金×利率×期数

×(1-利息税率)

(9)按比例分配问题 甲∶乙∶丙=a∶b∶c 全部数量=各种成分的数

量之和(设一份为x)

(10)日历中的问题 日历中每一行上相邻两数,日历中的数a的取值范围是

右边的数比左边的数大1;

日历中每一列上相邻的两

数,下边的数比上边的数大

7

1≤a≤31,且都是正整数 抓住数字所在的位置或新数、原数之间的关系

知识点四:方程与整式、等式的区别

(1)从概念来看:

整式:单项式和多项式统称整式。

等式:用等号来表示相等关系的式子叫做等式。如,m=n=n+m等都叫做等式,而像-,mn不含等号,所以它们不是等式,而是代数式。 2

方程:含有未知数的等式叫做方程。如5x+3=11,等都是方程。理解方程的概念必须明确两点:①是等式;②含有未知数。两者缺一不可。

(2)从是否含有等号来看:方程首先是一个等式,它是用“=”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号。

(3)从是否含有未知量来看:等式必含有“=”,但不一定含有未知量;方程既含有“=”,又必须含有未知数。但整式必不含有等号,不一定含有未知量,分为单项式和多项式。

四、规律方法指导

1、判断一个式子是否是一元一次方程:

(1)首先看是否是方程,

(2)再看是否满足一元一次方程的三个条件或对原式进行等价变形化简后再看;

2、解一元一次方程常用的技巧有:

(1)有多重括号,去括号与合并同类项可交替进行。

(2)当括号内含有分数时,常由外向内先去括号,再去分母。

(3)当分母中含有小数时,可用分数的基本性质化成整数。

(4)运用整体思想,即把含有未知数的代数式看做整体进行变形。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com