haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

_相似三角形的判定(2)

发布时间:2013-12-13 11:31:52  

相似三角形的判定 (第2课时)

一、如何判断两三角形是否相似?
1.定义法:两三角形对应角相等,对应边的比相等的
两个三角形相似

2.平行法:平行于三角形一边的直线和其他两边(或两
边的延长线)相交,所构成的三角形与原 三角形相似。
A D E C D E

A

∵ DE∥BC ∴ △ ADE ∽ △ ABC
C

B

B

A型

X型

二、 三角形全等有哪几种简单的判

定方法呢?
SSS、SAS 、ASA(AAS)、HL

猜想?
有没有其他简单的办法判断 两个三角形相似呢?

A

三组对应 边的比相等

A’
B’

B

C

C’

A'B' B' C' A'C' ? ? AB BC AC
是否有△ABC∽△ A' B' C' ?

? 探究2
任意画一个三角形,再画一个 三角形,使它的各边长都是原来三 角形各边长的k倍,度量这两个三 角形的对应角,它们相等吗?这两 个三角形相似吗?与同桌交流一下, 看看是否有同样的结论。

AB BC AC 已知:在?ABC和?A' B' C '中, ' B' ? B' C ' ? A' C ' , A 求证: △ ABC ∽△ A' B' C' A A' 证明:在线段A' B' (或它的延长线
上)截取A' D ? AB,过点D再做 DE ∥ B' C ' 交A' C ' 交于点E,可得 B ?A' DE ∽ ?A' B' C '
∴ 又 C D E

AB BC AC ? ? , A' D ? AB A' B' B' C ' A' C ' ∴ A' E ? AC 同理 DE ? BC


A' D DE A' E ? ? A' B' B' C ' A' C '

B'
A' E AC ? ∴ A' C ' A' C '

C'

?A' DE ? ?ABC



?ABC ∽ ?A' B' C '

(SSS)判定定理:如果两个三角形的三组对 应边的比相等,那么这两个三角形相似.

简单地说:三组对应边比相等的两三角形相似.
A

A'
C'

B

C

B'

A' B' B' C' A' C' ? ? ?k AB BC AC

?ABC ∽ ?A' B' C '

例1: 根据下列条件,判断?ABC和?A' B ' C ' 是

否相似,并说明理由。 AB ? 3, BC ? 5, AC ? 6, A' B ' ? 6, B ' C ' ? 10, A' C ' ? 12 . AB 3 1 BC 5 1 解:∵ ? ? , ? ? , A' B ' 6 2 B ' C ' 10 2 AC 6 1 ? ? A' C ' 12 2 AB BC AC ? ? ∴ A' B' B' C ' A' C '


?ABC ∽ ?A' B' C '

若:AB ? 3, BC ? 5, AC ? 6, A' B' ? 6, B' C ' ? 10, A' C ' ? 14 . 这两个三角形还是相似的吗?

猜想?

类似于判定三角形全等的 SAS方法,我们能不能通过两边 及其夹角来判定两个三角形相似呢?

探究3

利用刻度尺和量角器画?ABC和 AB AC ?A' B ' C ' , 使?A ? ?A' , 和 都 A' B ' A' C ' 等于给定的k值,量出它们第三组对
应边BC和B ' C '的长,它们的比值等 于k吗?另外两组角是否会相等呢?
改变k和∠A的值的大小,是否有同样的结论?

事实上我们经过探究发现有两边
及其夹角判定两个三角形相似的结论

如果两个三角形的两组对应 边的比相等,并且相应的夹角相 等,那么这两个三角形相似。 (SAS)

AB AC 已知:在?ABC和?A' B' C '中,B' ? A' C ' , ?A ? ?A' A' 求证: △ ABC ∽△ A' B' C' A A' 证明:在线段A' B'

(或它的延长线
上)截取A' D ? AB,过点D再做 DE ∥B' C ' 交A' C ' 交于点E,可得 B
C D E

?A' DE ∽ ?A' B' C '
∴ 又

A' E AC AB AC ? ? , A' D ? AB ∴ A' C ' A' C ' A' B' A' C ' ∴ A' E ? AC 又?A ? ?A'.


A' D A' E ? A' B' A' C '

B'

C'

?A' DE ? ?ABC



?ABC ∽ ?A' B' C '

(SAS)判定定理:如果两个三角形的两组
对应边的比相等,并且相应的夹角相

等,那么这两个三角形相似。
A

A'

B

C

B'

C'

A' B' A' C' ? , ?A ? ?A' AB AC

?ABC ∽ ?A' B' C '

? 猜想: 对于△ABC和△A`B`C`,如果 A`B`:AB= A`C`:AC. ∠C= ∠C`,这两 个三角形一定会相似吗?
不会,因为不能证明构造的三角形和原三角形全等
A'
A

B

C

B'

B' '

C'

例2:根据下列条件,判断△ABC和△A’B’C’ 是否相似,并说明理由。

AB=7, AC=14, ∠A=60° A’B’=3,A’C’=6, ∠A’= 60° 解 ∵ AB/A’B’=7/3 AC/A’C’=14/6=7/3 ∴ AB/A’B’= AC/A’C’ 又 ∠A= ∠A’=60° ∴ △ABC∽△A`B`C` AB=7, AC=14, ∠A=60° A’B’=6,A’C’=3, ∠A’= 60°

变 式

例3. 右图中 的两个三角 形相似吗? 理由是什么?

练习:
1.

根据下列条件,判断?ABC和?A' B ' C ' 是 否相似,并说明理由。 (1) AB ? 6, BC ? 8, AC ? 10, A' B ' ? 3, B ' C ' ? 4, A' C ' ? 5. (2) AB ? 20, AC ? 10, ?A ? 40 ?
A' B ' ? 4, A' C ' ? 6.?A' ? 40
?

相似

不相似

2.图中两个三角形是否相似?
B 6 A C 5 10 3 E

相似
2 3

不相似
6 14 9

4

E

3. 要制作两个形状相同的三角形框架,其中一 个三角形框架的三边长分别为4,6,8。另 一个三角形框架的一边长为2,它的别外两 条边长应当是多少?你有几种答案?
提示:三种选法,分别使另一个三角形的长

为2的边与长为4,6,8的边对应。

2:4=x:6=y:8 x:4=2:6=y:8 x:4=y:6=2:8

小结: 相似三角形的判定方法有几种?
1、定义判定法
2、平行判定法 比较复杂,烦琐 只能在特定的图形里面使用

3、边边边判定法(SSS)
4、边角边判定法(SAS)

作业:p45页 练习3 P54页 习题27.2 第2题(1,2),第3题


网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com