haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

13.3实数课件1(人教版八年级上)

发布时间:2014-01-03 14:45:23  

复 习
你认识下列各数吗?
3
3 ? 5

9 11

?5

0.875

0

有理数是分类:
正整数 整数 零 有 负整数 理 数 正分数 分数 负分数

正整数
有 正分数 理 零 数 负整数 负数 负分数

正数

引入 把下列各数写成小数的形式:
3 ? 3.0

有 限 小 数

47 ? 5.875 8
3 ? ? ? 0.6 5

无 限 循 环 小 数

11 ? ? 0.12 9 9 ?? ? 0.81 11 5 ? ? 0 .5 9

整数和分数统称为有理数

有限小数和无限循环小数叫有理数

探究 把下列各数写成小数的形式:

2 ? 1.4142??
3 ?1.7320?? ? 5 ? ? 2.2360??

3 3 3

? 3 ? ?1.442?? 5 ? 1.710?? 7 ? 1.913??

? ? 3.14159265??
无限不循环小数 无限不循环小数叫无理数

归纳
有理数 实 数 无理数

实数的分类 (定义)
整数 分数 有限小数或 无限循环小数 无限不循环小数

你还有其它分类方法吗?

归纳

实数的分类 (正负)
正实数 正有理数 正无理数

实 数

0
负实数

负有理数

负无理数

你知道怎样区分有理数和无理数吗?

范例 例1、下列各数中,哪些是有理数,哪 些是无理数?

?
3

22 7

0.4 16
3

3

2

? 0.23
1? 3

? 27
3

8 ? 64
3

0.131331333??

9

0

巩固
1 2 1、下列各数 ? , , (?3) ,3.14 , ? 7

2 ,0 中,有理数的个数有( )
A C 2个 4个 B D 3个 5个

巩固

2、在 0 , .100100010000??, 3 , 0
3

, 8 , ? 1 ? 9中,无理数分别
3
3





巩固 3、把下列各数分别填在相应的集合中:

??
? 0 .3

? 3.1415926
25 36


? 3
? 16

1.732

7

… 无理数集合

有理数集合

引入 在数轴上表示下列各数:

1 ?2 0 3 1 ?2 0 3
-3 -2 -1 0

3.6 3.6
1 2 3 4

有理数都可以用数轴上的点表示

探究
直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点由原点 到达O′,点O′的坐标是多少?

0

1

2

3 O′

4

探究

0

1

2

3 O′

4

你有什么发现? 无理数π可以用数轴上的点表示

再探
以单位长度为边长画一个正方形,以 原点为圆心,正方形对角线为半径画弧, 与正半轴的交点表示什么?

? 2
-2 -1 0

2

2
1 2

无理数 ? 2可以用数轴上的点表示

归纳
1、每一个有理数都可以用数轴上的点 表示; 2、每一个无理数都可以用数轴上的点 表示; 实数与数轴上的点是一一对应的

0

1

2

3

4

巩固
4、下列命题错误的是( ) A.有最小的正数 B.没有最大的有理数 C.有绝对值最小的数 D.正分数既是有理数又是实数

巩固 5、下列结论正确的是( ) A.无限小数是无理数 B.有理数都可以表示成分数形式 C.无理数都是带根号的数 D.无理数都是无限不循环小数

探究

2 的相反数是 ? 2



? ? 的相反数是
0 的相反数是
? 2 -2 -1

?
0

; ;

2
0 1 2

a的相反数是-a

探究

2 ?

2

?? ? ?
? 2 2
0 1

0?0

-2 ? 2-1

2 2

正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0.

范例
例1、(1)分别写出 - 6 、? ? 3.14 的相反数; (2)指出 - 5、 1- 3 2 分别是什么数的 相反数; (3)求 3 ? 64 的绝对值; (4)已知一个数的绝对值是 3 ,求这 个数。

巩固 6、请将数轴上是各点与下列实数对应 起来:

2

? 1.5
A

5

?
B C DE

3

-3 -2 -1

0

1

2

3

4

巩固

7、下列各数中,互为相反数的是(
A C

)
2

1 3与 3
与 3 ?1 (?1)
2

B D

2 与 (?2)
5 与 ?5

巩固 8、 A C

5 ? 3 ? 2 ? 5 的值是(

)

5
5?2 5

B D

?1
2 5 ?5

巩固 9、在数轴上距离表示-2的点是 3 个 单位长度的数是 。

小结

1、本节课你学了什么知识? 实数的定义 实数的分类 (定义、正负)
实数与数轴上的点一一对应 2、你有什么体会? 有理数 无理数 有限小数或 无限不循环小数 无限循环小数

作业
1、设 3 对应数轴上的点是A,? 5 对应数轴上的点是B,那么A、B间的 距离是 。
2、在数轴上与原点的距离是 2 6 的点 所表示的数是 。

作业
3、求下列各数的相反数:
3

? 2,

? 3 , 4

3 ? 2,

5 ? 2.

作业
4、求下列各数的绝对值:
3

? 8,

17 ,

2 , ?3

3 ? 1.7,

1.4 ? 2.

作业 5、把下列各数分别填在相应的集合中:

2 ??, 1 , 3

3.14, ? 3 ,

1.732,

0,

3

4,
… …

有理数
无理数

把下列各数分别填入相应的集合内: 1 20 5 3 2 , 4 , 7 , ,? , 2 , 3 , ? 5 , ? 3 8 , 2 (相邻两个3之间 4 , 0, 0.3737737773 ? ? ? 的7的个数逐次加1) 9 5 1 ,? , ? 3 8 , 3 2 , 20 , 4 2, 7 , , 2 3 4 ? 5 , 0.3737737773 ? ? ? , 0, 9

?

?

???

???

有理数集合

无理数集合

一、判断: 1.实数不是有理数就是无理数。( )

2.无理数都是无限不循环小数。(
3.无理数都是无限小数。( ) 4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( × )



6.两个无理数之积不一定是无理数。( 7.两个无理数之和一定是无理数。(× )




网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com