haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中数学初中数学

三角形中常见辅助线的做法改 2

发布时间:2014-01-09 11:50:08  

三角形中的常用辅助线

典型例题

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。

三角形中常见辅助线的作法:

①延长中线构造全等三角形; ②利用翻折,构造全等三角形;

③引平行线构造全等三角形; ④作连线构造等腰三角形。

常见辅助线的作法有以下几种:

(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。

练习:1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.

BD例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的

大小.

CAE

F

BDC

1

(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

例3如图,在四边形ABCD中,BC>BA,AD=CD,BD平分?ABC,求证: ?A??C?1800

4.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB

DF⊥AC于F.

(1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE、BE的长.

于E, BC F D

(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC

于D,若EB=CF。

求证:DE=DF。 G

2

5如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线相交于M、N。

求证:∠BME=∠

CNE

变形题:在四边形ABCD中,ACBD相交于O点,AC=BD,E、F分别是AB、CD的中点,连接EF分别交AC、BD于M、N,判断三角形MON的形状,并说明理由。

BBFC

(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 例6:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。 求证:CD=AD+BC。

7.如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC A

B

6.旋转

例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.

例2 D为等腰Rt?ABC斜边AB的中点,DM⊥DN,DM,DN分别交

BC,CA于点E,F。

(1)当?MDN绕点D转动时,求证DE=DF。

(2)若AB=2,求四边形DECF的面积。

ADFBEC

小结:三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。

同步练习

(答题时间:90分钟)

这几道题一定要认真思考啊,都是要添加辅助线的,开动脑筋好好想一想吧!加油!你一定行!

1、已知,如图1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。 求证:∠BAD+∠BCD=180°。

2、已知,如图2,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD。 求证:∠BAP+∠BCP=180°。

4

3、已知,如图3,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。

5

6

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com