haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中语文初中语文

初一下册知识点总结

发布时间:2014-07-10 09:21:14  

第六章 一元一次方程

一、几个概念

1.一元一次方程:

2.方程的解:使方程

?(1)在方程两边同时加上或减去同一个整式,_________________3.方程的性质

? ?(2)_____________________________________________________

5.移项: (切记:移项必须。

二、解一元一次方程的一般步骤:

①去分母——方程两边同乘各分母的

( 注意:去分母不漏乘,对分子添括号 )

② ,③ ,④ ,⑤

三、列方程(组)解应用题的一般步骤

①.设 ,②.列 ,③.解 ,④.检 ,⑤.答

第七章 二元一次方程组

一、几个概念

1.二元一次方程:2.二元一次方程组:3.二元一次方程组的解:使二元一次方程组的

的两个未知数的值。

二、二元一次方程组的解法:

1.代入消元的条件:将一个方程化为 (当一个方程中有一个未知数系数为±1时,最适合)。

2.加减消元的条件:两个方程中,某一未知数的系数 (当两个方程中,某一未知数系数成倍数关系时,最适合)。

三*、解三元一次方程组的一般步骤:

①.先用代入法或加减法消去系数较简单的一个未知数,转化为 ; ②.然后再解 ,得到两个未知数的值;

③.最后将上步所得两个未知数的值代回前边某一方程,求出另一未知数的值。

第八章 一元一次不等式

一、几个概念

1.不等式:

2.不等式的解:

3.不等式的解集:?(1)在不等式两边同时加上或减去同一个整式,_____________?4.不等式的性质?(2)___________________________________________________

?(3)___________________________________________________?

5.一元一次不等式:6.一元一次不等式组:7.一元一次不等式组的解集:

二、一元一次不等式(组)的解法:

1.解一元一次不等式的一般步骤:

①. ,②. ,③. ,④. ,⑤.

2.怎样在数轴上表示不等式的解集:

①先定起点:有等号时用 点;无等号时用 点。

②再画范围:小于号向 画;大于号向 画。

3.一元一次不等式组的解法:

先分别求;再求

4.注意:

①.在不等式两边同时乘或除以负数时, 不等号必须

②.求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律: 同大取 ,同小取 ;“大小,小大”取 ,“大大,小小”则

第九章 多边形

一、几个概念

1.三角形的有关概念:

①三角形:是由三条不在同一直线上的 组成的平面 图形,这三条

以A、B、C为顶点的三角形记为。

②三角形的内角:

③三角形的外角:

?(1)锐角三角形:________________________________?2.三角形按角分类?(2)直角三角形:________________________________

?(3)钝角三角形:________________________________?

?不等腰三角形:____________________________________?3.三角形按边分类? ?一般等腰三角形------只有两边相等的三角形。等腰三角形???特殊等腰三角形------等边(正)三角形。?

?角平分线:________________________________________?4.三角形的重要线段?中线:_________________________________

?高:______________________________________________?

5.正多边形:

二、多边形的边、角间关系:

1.三角形角间关系:①.内角和为 ;

②.外角等于 ③.外角大于 ④.三角形的外角和为

2.三角形边间关系:< 第三边 <

3. n边形的内角和等于,外角和等于。

三、用正多边形拼地板

1.用正多边形铺满平面的条件:

围绕一点拼在一起的几个加在一起恰好组成一个

2.用相同正多边形铺满平面的条件是:360是正多边形一个内角度数的

3.用不同正多边形铺满平面的条件是:拼接点周围各正多边形一个内角的和为

第十章 轴对称、平移与旋转

一、轴对称:

1.轴对称图形:如果一个图形沿一条直线对折,对折后的两部分能 , 那么这个图形就是 ,这条直线就是它的 。

2.两个图形成轴对称:如果一个图形沿一条直线折叠后,它能与另一个图形 那么这两个图形成 ,这条直线就是它们的 , 折叠时重合的对应点就是

3.轴对称的性质:轴对称(成轴对称的两个)图形的对应线段 ,对应角

4.垂直平分线的定义:

5.对称轴的画法:先连结一对 点,再作所连线段的

6.对称点的画法:过已知点作对称轴的 并

二、平移

图形的平移:一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称

为 ,它是由移动的 和 所决定。

平移的特征:经过平移后的图形与原图形对应线段 (或在同一直线上)且 , 对应角 ,图形的 与 都没有发生变化,即平移前后的两个图形 连结每对对应点所得的线段 (或在同一直线上)且 。

三、旋转

图形的旋转:把一个图形绕一个 沿某个 旋转一定 的变换, 叫做 ,这个定点叫做 。

图形的旋转由 、 和 所决定。

注意:①旋转 在旋转过程中保持不动. ②旋转 分为 时针

和 时针。 ③旋转 一般小于360°。

旋转的特征:图形中每一点都绕着 旋转了 的角度,对应点到旋 转中心的 相等,对应线段 ,对应角 ,图形的 和 都没有发生变化,也就是旋转前后的两个图形 。

旋转对称图形:若一个图形绕一定点旋转一定角度(不超过180°)后,能与 重合,这种图形就叫 。

四、中心对称

中心对称图形:把一个图形绕着某一个点旋转 °后,如果能够与 重合, 那么这个图形叫做 图形,这个点就是它的 。

成中心对称:把一个图形绕着某一个点旋转 °后,如果它能够与 重合 那么就说这两个图形关于这个点成 ,这个点叫做 。 这两个图形中的对应点叫做关于中心的 。

中心对称的性质:关于中心对称的图形,对应点所连线段都经过 , 而且被对称中心 。(中心对称是旋转对称的特殊情况)。

中心对称点的作法——连结 和 ,并延长一倍。

对称中心的求法——方法①:连结一对对应点,再求其 ;

方法②:连结两对对应点,找他们的 。

五、图形的全等

1.全等图形定义:能够完全 的两个图形叫做全等图形。

2.图形变换与全等:一个图形经翻折、平移、旋转变换所得到的新图形与

全等;全等的两个图形经过上述变换后一定能够 。

3.全等多边形:⑴有关概念:对应顶点、对应边、对应角等。

⑵性质:全等多边形的 、 相等;

⑶判定: 、 分别对应相等的两个多边形全等。

4.全等三角形:⑴性质:全等三角形的 、 相等; ⑵判定: 、 分别对应相等的两个三角形全等。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com