haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 初中作文初中作文

探索三角形相似的条件教案二

发布时间:2013-09-26 09:30:10  

探索三角形相似的条件

教学目标

(一)教学知识点

1.掌握三角形相似的判定方法2、3.

2.会用相似三角形的判定方法2、3来判断、证明及计算.

(二)能力训练要求

1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.

2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.

(三)情感与价值观要求

1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.

2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.

教学重点

相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.

教学难点

判定方法的推导及运用

教学方法

探索——总结——运用法

教具准备

投影片三张

第一张(记作§4.6.2 A)

第二张(记作§4.6.2 B)

第三张(记作§4.6.2 C)

教学过程

Ⅰ.创设问题情境,引入新课

投影片(§4.6.2 A)

[生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.

他们相似的理由都是用相似三角形的判定方法1.

[师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.

Ⅱ.讲授新课

[师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?

[生]三边对应成比例的两个三角形相似.

[师]下面我们就来验证一下.

1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.

投影片(§4.6.2 B)

间,请大家一个组取一个相同的k值,不同的组取不同的k值,好吗?

[生]好.

[师]经过大家的亲身参与体会,你们得出的结论是什么呢?

[生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′

△ABC∽△A′B′C′,理由是:

∠A=∠A′,∠B=∠B′,∠C=∠C′

ABBCCA== A?B?B?C?C?A?

根据相似三角形的定义可知:△ABC∽△A′B′C′.

[师]其他组的同学的结论相同吗?

[生]相同.

[师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.

2.相似三角形的判定方法3.

[师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.

[生]两边对应成比例且夹角相等的两个三角形相似.

[师]好,下面我们还是由大家自己推导吧.请看投影片(§4.6.2 C)

法.

[生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠

C′,因此根据判定方法1可知,△ABC∽△A′B′C′.

[师]大家同意吗?

[生]同意.

[师]好,我们又探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似.

3.想一想

[师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?

在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?

图4-31

[生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.

4.做一做

[师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.

[生]一共有四种方法.

第一种:对应角相等,对应边成比例的两个三角形相似.即定义法. 第二种:即判定方法1

两角对应相等的两个三角形相似.

第三种:即判定方法2

三边对应成比例的两个三角形相似.

第四种:即判定方法3

两边对应成比例且夹角相等的两个三角形相似.

[师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.

5.议一议

如图4-32,△ABC与△A′B′C′相似吗?你有哪些判断方法?

图4-32

[生]解:△ABC∽△A′B′C′.

判断方法有.

1.三边对应成比例的两个三角形相似.

2.两角对应相等的两个三角形相似.

3.两边对应成比例且夹角相等.

4.定义法.

Ⅲ.课堂练习

下面每组的两个三角形是否相似?为什么?

图4-33

[生]解:(1)△ABC∽△DEF ∵ABACBC=2 ??DEDFEF

∴△ABC∽△DEF

(2)在△ABC中

AB=2,AC=6 ∵

∴AE1AF31?,?? AB2AC62AEAF ?ABAC

∵∠A=∠A

∴△ABC∽△AEF

补充练习

依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.

(1)∠A=120°,AB=7 cm,AC=14 cm,

∠A′=120°,A′B′=3 cm,A′C′=6 cm,

(2)AB=4 cm,BC=6 cm,AC=8 cm,

A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.

解:(1)∵

∴AB7AC147=? ?,A?B?3A?C?63ABAC ?A?B?A?C?

又∵∠A=∠A′

∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)

(2)∵

∴AB41BC61AC81== ,== ,== A?B?123B?C?183A?C?243ABBCAC== A?B?B?C?A?C?

∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)

Ⅳ.课时小结

本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两

边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.

Ⅴ.课后作业

习题4.8

Ⅵ.活动与探究

要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?你选的木料唯一吗?

解:选法不唯一.

因为另一个三角形的一边长2究竟对应哪一条边,在已知条件中并没有规定,因此2有可能对应每一条边,即2对应4,2对应5,2对应6,所以有三种情况.

设另一个三角形中两边长为x、y.

当2对应4时,有2∶4=x∶5=y∶6

解,得

x=,y=3

当2对应5时,有2∶5=x∶4=y∶6

解,得

x=,y=8

512 552

当2对应6时,有2∶6=x∶4=y∶5

解,得

x=,y=. 所以框的另两边长可选、3或、

板书设计

52851245,或、. 3354353

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com