haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 小学数学小学数学

第二讲 列方程解应用题 学生

发布时间:2014-01-25 11:54:32  

用一元一次方程解决问题

分析求解列方程解应用题的基本思路为:问题???方程?????解答.由此可得解决此类 抽象检验

题的一般步骤为:审、设、列、解、验、答.

要点诠释:

(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;

(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;

(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;

(4)“解”就是解方程,求出未知数的值.

(5)“验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;

(6)“答”就是写出答案,注意单位要写清楚.

常见列方程解应用题的几种类型

1.和、差、倍、分问题

(1)基本量及关系:增长量=原有量×增长率,

现有量=原有量+增长量,现有量=原有量-降低量.

(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.

2.行程问题

(1)三个基本量间的关系: 路程=速度×时间

(2)基本类型有:

①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间

Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间

Ⅱ.寻找相等关系:

第一, 同地不同时出发:前者走的路程=追者走的路程;

第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.

③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,

逆流速度=静水速度-水流速度,

顺水速度-逆水速度=2×水速;

Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中

的速度不变来考虑.

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助

画草图来分析.

【典型例题】

类型一、和差倍分问题

1.2011年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?

解: 设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.

举一反三:

【变式】麻商集团三个季度共销售冰箱2800台,第一个季度销售量是第二个季度的2倍.第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?

解:设第二个季度麻商集团销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台

类型一、和差倍分问题

1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤? 解:设油箱里原有汽油x公斤,由题意得:

【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.

举一反三:

【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?

解:设这个班有x名学生,根据题意得:

类型二、行程问题

1.一般问题

2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?

解:设小山娃预订的时间为x小时,由题意得:

举一反三:

【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.

解:设这段坡路长为a千米,汽车的平均速度为x千米/时,则上坡行驶的时间为下坡行驶的时间为

a小时,10a小时. 20

2.相遇问题(相向问题)

【相遇问题】

3. A、B两地相距100km,甲、乙两人骑自行车分别从A、B两地出发相向而行,甲的速度是23km/h,乙的速度是21km/h,甲骑了1h后,乙从B地出发,问甲经过多少时间与乙相遇?

解:设甲经过x小时与乙相遇.

举一反三:

【变式】甲、乙两人骑自行车,同时从相距45km的两地相向而行,2小时相遇,每小时甲比乙多走2.5km,求甲、乙每小时各行驶多少千米?

解:设乙每小时行驶x千米,则甲每小时行驶(x+2.5)千米,根据题意,得:

3.追及问题(同向问题)

4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?

解:设通讯员x小时可以追上学生队伍,则根据题意,

【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x表示小时,18表示分钟,两边单位不一致,应先统一单位.

4.航行问题(顺逆风问题)

5.一艘船航行于A、B两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.

解:设船在静水中速度为x千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:

【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.

1.车过桥问题

例2. 某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.

【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.

解:设火车车身长为xm,根据题意,得:

【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A点表示火车头):

(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.

(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.

举一反三:

【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?

解:设从第一排上桥到排尾离桥需要x分钟,列方程得:

2.相遇问题(相向问题)

例3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A、B两地间的路程.

解:设A、B两地间的路程为x千米,由题意得:

【点评】根据“匀速前进”可知A、B的速度不变,进而A、B的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.

举一反三:

【二次相遇问题】

【变式】甲、乙两辆汽车分别从A、B两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A站34km,已知甲车的速度是70km/h,乙车的速度是52km/h,求A、B两站间的距离.

解:设A、B两站间的距离为x km,由题意得:

3.追及问题(同向问题)

4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了1,结果又用两小时才追上这辆卡车,求卡车的速度. 3

解:设卡车的速度为x千米/时,由题意得:

4.航行问题(顺逆风问题)

5.盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A、C两地相距10千米,船在静水中的速度为7.5千米/时,求A、B两地间的距离.

【思路点拨】由于C的位置不确定,要分类讨论:(1)C地在A、B之间;(2)C地在A地上游.解:设A、B两地间的距离为x千米.

【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.

5.环形问题

例6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.

x千米/时, 由题意得: 解;设最慢的人速度为x千米/时,则最快的人的速度为

【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.

举一反三:

【变式】两人沿着边长为90m的正方形行走,按A→B→C→D→A?方向,甲从A以65m/min的速度,乙从B以72m/min的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上? 解:设乙追上甲用了x分钟,则有

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com