haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 小学数学小学数学

六年级 整理和复习

发布时间:2013-10-11 12:32:09  

六年级 整理和复习

数与代数(一)

1.整数的意义:像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。整数的个数是无限的。没有最小的整数,也没有最大的整数。自然数是整数的一部分。

2.自然数的意义:在数物体个数的时候,用来表示物体个数的1,2,3,4,5,…叫做自然数。一个物体也没有用0表示。自然数的个数是无限的。最小的自然数是0,没有最大的自然数。

(1)一个自然数有两方面的意义:一是表示事物的多少,称为基数;二是表示事物的次序,称为序数。如“3个学生”中的“3”是基数,“第三个学生”中的“3”就是序数。

(2)自然数的基本单位:任何非0自然数都是由若干个“1”组成的,所以“1”是自然数最基本的单位。

1.正数和负数的意义:像1(或+1),2,3…这样的数叫做正数;像-3,-2,-1,…这样的数叫做负数。自然数是大于或等于0的整数,也可以说是不小于0的整数,即“非负整数”。

2.分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

(1)分数单位:把单位“1”平均分成若干份,表示这样一份的数就是这个分数的分数单位。一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。(注意:带分数只有化成假分数后,它的分子才能是这个带分数中含有分数单位的个数。)

(2)分数的分类。真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或分子和分母相等的分数叫做假分数。假分数大于或等于1。带分数实际上就是大于1的假分数的另一种表示形式。

1.百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”表示。

分数和百分数的关系:分数既可以表示一个数,也可以表示两个数的比;而百分数只表示一个数占另一个数的百分比,不能用来表示具体数。因此,百分数是一种特殊的分数,但分数可以有单位,而百分数不能有单位。

1.小数的意义:把整数“1”平均分成10份,100份,1000份,…这样的一份或者几份是十

分之一,百分之一,千分之一,…或十分之几,百分之几,千分之几,…可以用小数表示。小数的单位是0,1,0.01,0.001,…它是十进制分数的另一种表现形式。

小数的分类

按小数的整数部分是否为0 纯小数

带小数

小数 按小数部分的位数有限小数

是否是有限的 无限小数 无限不循环小数

无限循环小数 纯循环小数

混循环小数

(1)纯小数和带小数:整数部分是0的小数叫做纯小数,纯小数小于1;整数部分不是0的小数叫做带小数,带小数大于1。

(2)有限小数和无限小数:小数部分位数有限的小数,叫做有限小数;小数部分位数无限的小数,叫做无限小数。如4.28是有限小数,π是无限小数。

(3)循环小数:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。循环小数都是无限小数。

(4)循环节:一个循环小数的小数部分中,依次不断重复出现的数字,叫做这个循环小数的循环节。

(5)纯循环小数和混循环小数:循环节是从小数部分第一位开始的,叫做纯循环小数;循环节不是从小数部分第一位开始的,叫做混循环小数。

计数单位和数位

1.计数单位:个、十、百、…以及十分之一、百分之一、…都是计数单位。

2.数位:各个计数单位所占的位置,叫做数位。数位是按一定的顺序排列的。

3.十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。它的特点是每相邻的两个计数单位之间的进率都是“十”,就是10个较低的计数单位可以进成一个较高的计数单位(通常所说的“逢十进一”)。这种以“十”为基础进位的计数方法,叫做十进制计数法。

4.数的分级:按照我国的计数习惯,整数从个位起,每四个数位是一级。个位、十位、百位、

千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿…

数与代数(二)

一.数的读法和写法

1.整数的读、写法

读法:从高位到低位,一级一级地读,每一级末尾的0都不读,其他数位连续有几个0,都只读一个零。读数前通常先把这个数分级,再按各数级来读。

写法:从高位到低位,一级一级地写,哪一个数位上一个计数单位也没有,就在那个数位上写0占位。

2.小数的读、写法

读法:读小数的时候,从左往右,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分从高位到低位顺次读出每一个数位上的数字,即使是连续的0,也要依次读出。

写法:写小数时,也是按照从左到右的顺序写,整数部分按照整数的写法来写(整数部分是零的写作“0”),小数点写在个位的右下角,小数部分从高位到低位依次写出每个数位上的数字。

3.分数的读、写法

读法:读分数时,先读分数的分母,在读“分之”,最后读分子。读带分数时,先读整数部分,再读分数部分,中间加一个“又”字。

写法:写分数时,先写分数线,再写分母,最后写分子。写带分数时,要先写整数部分,再写分数部分。整数部分要对准分数线,距离要紧凑。再列式计算中,分数要对准“=”号中两横线的中间。

4.百分数的读、写法

读法:先读百分号,再读百分号前面的数。

写法:写百分数时,先写分子,再写百分号。

5.正、负数的读、写法

①正数的读法:“+”读作“正”,正号后面是几就读作几。

②负数的读法:“-”读作“负”,负号后面是几就读作几。

③正、负数的读法:正、负数表示两种具有相反意义的量,为了区分正、负数,正数就在数的前面加“+”,也可以省略不写;负数则在数的前面写“-”,不可省略。

二.数的改写

1.假分数与带分数、整数之间的互化

①假分数化成整数或者带分数的方法:根据分数与除法的关系,用假分数的分子除以分母,如果分子是分母的倍数,所得的商就是整数;如果分子不是分母的倍数,所得的商就是带分数的整数部分,余数就是分数部分的分子,原分母不变。

②整数化成假分数的方法:把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数的乘积作分子。

2.分数、小数与百分数之间的互化

判断一个分数能否化成有限小数的方法:要先看这个分数是否是最简分数。如果是最简分数,就要看其分母中含有哪些质因数。如果分母中含有质因数2和5,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

三.数的大小比较

1.整数的大小比较

比较两个整数的大小,要看它们的位数,如果位数不同,那那么位数多的数就大;如果数位相同,就从高位比起,相同数位上的数大的那个数就大。

2.小数的大小比较

先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同,百分位的数大的那个数就大??以此类推

3.分数的大小比较

①真、假分数或整数部分相同的带分数:分母相同,分子大则分数大;分子相同,则分母小的分数大;分子和分母都不相同,通分后化成同分母或同分子分数再比较大小。

②整数部分不同的带分数:整数部分大则分数大。

4.正负数的大小比较

①正数大于负数。

②负数与负数比较,负号后面的数越大,这个数反而越小;负号后面的数越小,这个数反而越大。

数的认识(三)

数的性质

1、分数的基本性质:分数的分子或分母同时乘或除以一个相同的数(0除外),分数的大小不变。

2、小数的基本性质:

(1)小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。

(2)小数的基本性质与分数的基本性质之间的关系:小数的基本性质与分数的基本性质是一样的。

4.小数点位置移动引起小数大小变化的规律:小数点向右移动一位、两位、三位??该数就扩大到原来的10倍、100倍、1000倍??小数点向左移动一位、两位、三位??该数就缩小到原来的10/1、100/1、1000/1??应用小数位置移动的变化规律,如果要把一个数扩大到原来的10倍、100倍、1000倍??就要把它的小数点向右移动一位、两位、三位??如果要把一个数缩小到原来的10/1、100/1、1000/1??就要把它的小数点向左移动一位、两位、三位??

数的认识(四)

1、已知a、b、c均为整数(为了方便,在研究因数和倍数时,所指的数不包括0)且a×b=c,那么c就是a和b的倍数,a和b就是c的因数。倍数和因数是相互依存的。

2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数;一个数既是它本身的因数,也是它本身的倍数。 3、2的倍数的特征:个位上的数字是0、2、4、6、8。

4、3的倍数的特征:各个位数上的数字的和是3的倍数。

5、5的倍数的特征:个位上的数字是0或者是5。

6、既是2又是5的倍数的特征:个位上的数字是0。

7、奇数:在自然数中,不是2的倍数的数叫做奇数。

8、偶数:在自然数中,是2的倍数的数叫做偶数。

9、研究奇数、偶数时包括0,因此自然数不是奇数就是偶数。最小的奇数是1,最小的偶数是0,没有最大的奇数和偶数。

10、质数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。最小的质数是2,2是唯一的偶质数,没有最大的质数。

11、合数的意义:一个数如果除了1和它本身还有别的因数,这样的数叫做合数。最小的合数是4,没有最大的合数。

12、1既不是质数也不是合数。

13、最大公因数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。

14、最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数。其中最大的一个叫做这几个数的最小公倍数。

15、互质数:公因数只有1的两个数叫做互质数。

数的运算

一、 四则运算的意义

二、 整数四则运算中各部分间的关系

三、0与1在四则运算中的特殊性:

a+0=a a-0=a a-a=0 a×0=0 a×1=a a÷1=a 0÷a=0

11÷a= ÷a=1(a作除数时不为0) a

四、四则运算定律、运算性质

1、运算定律

2、运算性质

①减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c

②除法的运算性质(除数不为0):

a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

五、四则混合运算的顺序

1、四则运算分为两级:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。

2、①在没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算。

②在有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算括号外面的。

四则运算定律、运算性质

1.运算定律。

(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

字母表示:a+b=b+a

(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,它们的和不变。

字母表示:a+b+c=(a+b)+c=a+(b+c)

(3)乘法交换律:两个数相乘,交换因数的位置,它们的积不变。

字母表示:a×b=b×a

(4)乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后两个数相乘,在和第一个数相乘,他它们的积不变。

字母表示:a×b×c=(a×b)×c=a×(b×c)

(5)乘法分配律:两个数的和与第一个数相乘,等于把这两个数分别于这个数相乘,再把两个积加起来。 字母表示:(a+b)×c=a×c+b×c a×(b+c)=a×b+a×c

1.运算性质。

(1)减法的运算性质:a-(b+c)=a-b-c a-(b+c)=a-b+c

(2)除法的运算性质(除数不为0):

a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c

四则混合运算的顺序

1.四则运算分为两级:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。

(1)在没有括号的算式里,如果只含有同一级要先做第二级运算运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算。

(2)在有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算括号外面的。

复合应用题

1.复合应用题:是用两步或两步以上计算来解答的应用题。分析此类问题,一般采用分析法或综合法。

2.用算术方法解应用题的一般步骤:(1)审清题意,并找出已知条件和所求问;(2)分析数量关系,确定先算什么,再算什么,最后算什么;(3)列式计算;(4)检验并写出答语。

复合应用题的类型及解法

1.“归一”问题:此类应用题中暗含着单一量不变,文字叙述中多带有类似“照这样计算”的字样,其解题的关键是从已知的一种对应量中求出单一量(即归一),再以它为标准,根据题目要求算出所求量。

2.“归总”问题:此类题中暗含着总量不变,即乘积不变。其解题的关键是求出总数(即归总),再根据总数算出所求量。

3.行程问题:根据速度、时间和路程之间的关系,计算相向、相背或同向运动的问题,称为行程问题。其基本的数量关系式为:速度×时间=路程。一.相遇问题,即同时相向而行并相遇(或同时背向而行):速度和×(相遇)时间=总路程。二.追及问题,即同时同向而行,速度慢的在前,速度快的在后:速速度差×追及时间=路程差

4.工程问题:把工作总量看作单位“1”,工作效率用单位时间内完成工作总量的“几分之一”表示。根据工作总量、工作效率、工作时间其中两种量求出第三种量。数量关系式为:

工作效率×工作时间=工作总量

5.分数应用题:关键是找准标准量,即单位“1”。若单位“1”已知,用乘法计算;若单位“1”未知,用除法计算。

(1)求甲比乙多(或少)几分之几的解题规律:甲乙的差÷乙;

(2)已知甲比乙多(或少)几分之几,求甲的解题规律:乙×(1±几/几)。

常见的量

1、长度、面积和体积单位及其同类量之间的进率。

长度单位:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

面积单位:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方

分米=100平方厘米

体积单位:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方

毫米 1升=1000毫升 1立方分米=1升 1立方厘米=1毫升

2.质量单位及其之间的进率。

1吨=1000千克 1千克=1000克

3.时间单位及其之间的进率。

按大

小月

一年有12个月(平

年全年365天,闰

年全年366天) 按四

个季

度分 份 大月 小月 既不是大月,也不是小月 第一季度 第二季度 第三季度

第四季度 1,3,5,7,8,10,12月(每月31天) 4,6,9,11(每月30天) 每月分三旬:上旬(1~10日)中旬(11~20日);平年2月28天,闰年2月29天 下旬(21日~月底)。 1月,2月,3月 4月,5月,6月 7月,8月,9月 10月,11月,12月

(3)日、时、分、秒等其他时间单位。

1世纪=100年 1日=24时 1时=60分 1分=60秒 1星期=7天

(4)平年、闰年的判断方法。

根据公历年份判断,整百、整千的年份是400的倍数,其他年份是4的倍数的年份都是闰年,反之则是平年。

4.人民币的单位及其进率。

人民币的单位有元、角、分。

1元=10角 1角=10分

5.名数的意义。

计量的结果,要用数来表示,并且还要带上单位名称,通常把他们合起来叫做名数。只带有一个单位名称的,叫做单名数,如1米、30天等;带有两个或两个以上的单位名称的,叫做复名数,如3吨50千克、1米5厘米等。

☆6.换算单位。

把高级改写成低级单位的乘这两个单位之间的进率,把低级单位改写成高级单位的要除以这两个单位间的进率。如果进率是10,100,1000??时,也可以把小数点向右(或左)移动一位,两位,三位??来完成。

比和比例

比和比例的联系与区别:

比和分数、除法的联系:

求比值和化简化: 正比例和反比例的意义和判断方法

1、正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。 正比例关系式:y/x=k(一定)

2、反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 反比例关系式:x×y=k(一定) 1、判断正、反比例的方法 一找二看三判断,即:

1)找变量:分析数量关系,确定哪两种量是相关联的量。

2)

3) 看定量:分析这两种相关联的量,它们之间的关系是商一定还是积一定。 判断:如果商一定,就成正比例;如果积一定,就成反比例;如果商或积都不是定量,就不成比

例。

1、

正比例、反比例的区别与联系

用比例知识解决问题

1、按比例分配问题

1)按比例分配应用题:把一个数量按照一定的比分配成几部分,求部分数量各是多少的应用题叫做按比例分配应用题。

2)解题方法。

一般方法:把比转化为分数,用分数方法解答,即先求总份数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几是多少的解题方法,分别求出各部分的量是多少。

归一法:把比看作分得的份数,先求出总份数,然后用“总量÷总份数=平均每份的量(归一)”,再用“1份的量×各部分量所对应的份数”求出各部分的量。

用比例知识解答:首先设未知量为x,然后根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。

2、用正、反比例知识解答应用题的步骤

1)分析数量关系。判断成什么比例。

2)找等量关系。如果是成正比例,则按“等比”找等量关系式;如果是成反比例,则按“等积”找等量关系式。

3)列比例式。设未知数为x,并代入等量关系式,得正比例式或反比例式。

4)解比例。

5)检验并写出答语。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com