haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 小学数学小学数学

五年级概念

发布时间:2014-01-05 12:46:21  

五年级数学复习概念整理

一、整数和小数

1.最小的一位数是1,最小的自然数是0 。

2.小数的意义:把整数“1”平均分成10份、100份、1000份??这样的一份或几份分别是十分之几、百分之几、千分之几??可以用小数来表示。

3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位??

4.小数的分类:

有限小数

小数无限循环小数:1/3 2/3 1/7??

无限不循环小数:∏??

5.整数和小数都是按照十进制计数法写出的数。

6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

7.小数点向右移动一位、二位、三位??原来的数分别扩大10倍、100倍、1000倍??

二、数的整除

1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.因数、倍数:如果数a能被数b整除,(b≠0)a就叫做b的倍数,b就叫做a的因数。 找因数的方法:从小到大,成对出现。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。

4.按能否被2整除,自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数因数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。质数都有2个因数。 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数至少有3个因

数。最小的质数是2,最小的合数是4。

1~100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、

53、59、61、67、71、73、79、83、89、97.

1~20以内的合数有:4、6、8、9、10、12、14、15、16、18

6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。

7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。

8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例:15=3×5

9.公因数、公倍数:

(1)几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。

(2)几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

10.互质数:公因数只有1的两个数叫做互质数。

11.求最大公因数和最小公倍数的三种情况:

(1)互质关系的两个数最大公因数是1,最小公倍数是两数的乘积;

(2)倍数关系的两个数的最大公因数是较小数,最小公倍数是较大数;

(3)一般关系的两个数的最大公因数、最小公倍数用短除法来求。(将短除法中的除数相乘就是最大公因数,将除数和商相乘就是最小公倍数。)

12.两数之积等于最小公倍数和最大公因数的乘积。

13.约分:把一个分数化成和原来相等,但分子和分母都比较小的分数,这个过程叫做约分。(给分子、分母同时除以他们的公因数)

14.通分:把几个异分母分数化成和原来分数相等的同分母分数,这个过程叫做通分。

三、四则运算

1.一个加数=和-另一个加数 被减数=差+减数 减数=被减数-差

一个因数=积÷另一个因数 被除数=商×除数 除数=被除数÷商

2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。

3.运算定律:

(1)加法交换律:a+b=b+a

两个数相加,交换加数的位置,它们的和不变。

乘法交换律:a×b=b×a

两个数相乘,交换因数的位置,它们的积不变。

(2)加法结合律: (a+b)+c=a+(b+c)

三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

乘法结合律:(a×b)×c=a×(b×c)

三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

(3)乘法分配律:(a+b)×c=a×c+b×c

两数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

(4)减法的性质:a-b-c=a-(b+c)

从一个数里连续减去两个数,等于从这个数里减去两个减数的和。

除法的性质:a÷b÷c=a÷(b×c)

一个数连续除以两个数,等于这个数除以两个除数的积。

四、数量关系式

1.速度×时间=路程 路程÷时间=速度 路程÷速度=时间

2. 速度和×相遇时间=总路程 总路程÷相遇时间=速度和 总路程÷速度和=相遇时间

3. 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

4. 单价×数量=总价 总价÷数量=单价 总价÷单价=数量

5. 每份数×份数=总数 总数÷份数=每份数 总数÷每份数=份数

五、分数

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。

3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。 分数和小数的联系:小数实际上就是分母是10、100、1000??的分数。

分数与小数的互化:

4.分数的分类:分数可以分为真分数和假分数。

5.真分数:分子小于分母的分数叫做真分数。真分数小于1。

假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。

6. 带分数:带分数是由整数和真分数组成的。例如: 读作:

(分子不能被分母整除的假分数还可以用带分数表示)

7.假分数与带分数的互化:

(1)假分数化成带分数:分子除以分母,所得的商就是带分数的整数部分,余数是分数部分的分子,分母不变。

(2)带分数化成假分数:用带分数的整数乘分母加分子作假分数的分子,分母不变。

7.最简分数:分子与分母互质的分数叫做最简分数。

8.分数的基本性质:

分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

9.这样的分数可以化成有限小数(前提是这个分数要是最简分数):

如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。

10.同分母分数比大小的方法:(1)分母相同,分子越大分数值就越大;

(2)分子相同,分母越大分数值就越小。

异分母分数比大小的方法:(1)通分母比较法;(2)通分子比较法;(3)化小数比较法;

(4)画图比较法;(5)与二分之一作比较;(6)交叉相乘比较法;(7)以“1”作标准比较法??

11.同分母分数加减法:同分母分数相加减,分母不变,只把分子相加减。

异分母分数加减法:异分母分数相加减,要先通分,再按照同分母分数加减法来计算,能约分的要约分成最简分数。

六、量的计量

1.长度单位有:千米----米----分米----厘米----毫米。

面积单位有:平方千米----公顷------平方米----平方分米----平方厘米。

质量单位有:吨----千克----克。

时间单位有:世纪-----年----月----日----时----分----秒。

2.名数:把计量得到的数和单位名称合起来叫做名数。

单名数:只带有一个单位名称的叫做单名数。

复名数:带有两个或两个以上单位名称的叫做复名数。

6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的

名数除以进率。

七、几何初步知识

1.垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。直线外一点到这条直线的垂线最短(画图说明)。

2.平行线:在同一平面内,不相交的两条直线叫做平行线。也可以说这两条直线互相平行。

3.平行线之间的距离处处相等(画图说明)。

4. 垂线和平行线的画法:

5.三角形:有三条线段围成的图形叫做三角形。

6.三角形的分类:(1)按角分:锐角三角形、钝角三角形、直角三角形。

(2)按边分:等腰三角形、等边三角形、一般三角形。

7.三角形三个内角和是180°。

8.三角形的任意两边之和都大于第三边。

9.四边形:由四条线段围成的图形。

10.图形的底和高:

(1)三角形的底和高:从三角形的一个顶点到它的对边引一条垂线,顶点到垂足间的线段,叫做三角形的高;这条对边叫做三角形的底。

三角形高的画法:

钝角三角形 锐角三角形 直角三角形

(2)平行四边形的底和高:从平行四边形的一条边上的一点向对边引垂线,这点到垂足间的线段叫做平行四边形的高,这条对边叫做平行四边形的底。

(3)梯形的底和高:在梯形里,互相平行的一组对边分别叫做梯形的上底和下底;不平行的一组对边叫做梯形的腰;从上底的一点向下底引一条垂线,这点到垂足间的线段,叫做梯形的高。

11.周长:围成一个图形的所有边长的总和就是这个图形的周长。

面积:物体的表面或围成的平面图形的大小,叫做它们的面积。

八、公式的整理

平面图形:

1.长方形:

周长=(长+宽)×2 C长=(a+b)×2

面积=长×宽 S长=a ×b

2.正方形:

周长=边长×4 C正=a×4

面积=边长×边长 S正=a×a (对角线×对角线的一半)

3.平行四边形的面积=底×高 S平=ah

4.三角形的面积=底×高÷2 S三=ah÷2

5.梯形的面积=(上底+下底)×高÷2 S梯=(a+b)×h÷2

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com