haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 小学其它学科小学其它学科

圆的教案

发布时间:2013-12-27 17:02:11  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

第二十四章《圆》小结

一、本章知识结构框图

二、本章知识点概括

(一)圆的有关概念

1、圆(两种定义)、圆心、半径;

2、圆的确定条件:

①圆心确定圆的位置,半径确定圆的大小;

②不在同一直线上的三个点确定一个圆。

3、弦、直径;

4、圆弧(弧)、半圆、优弧、劣弧;

5、等圆、等弧,同心圆;

6、圆心角、圆周角;

7、圆内接多边形、多边形的外接圆;

8、割线、切线、切点、切线长;

9、反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。

(二)圆的基本性质

1、圆的对称性

①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 *②圆是中心对称图形,圆心是对称中心。

2、圆的弦、弧、直径的关系

①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

39

②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)

3、弧、弦、圆心角的关系

①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。

4、圆周角的性质

①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。

②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

(三)与圆有关的位置关系

1、点与圆的位置关系

设⊙O的半径为r,OP=d则:

点P在圆内d<r; 点P在圆上d=r; 点P在圆外d>r.

2、直线与圆的位置关系

设⊙O的半径为r,圆心O到l的距离为d则:

直线l与⊙O相交 d<r 直线和圆有两个公共点; 直线l与⊙O相切 d=r 直线和圆只有一个公共点; 直线l与⊙O相离 d>r 直线和圆没有公共点。

3、圆与圆的位置关系

①如果两圆没有公共点,那么这两个圆相离,分为外离和内含; 如果两圆只有一个公共点,那么这两个圆相切,分为外切和内切; 如果两个圆有两个公共点,那么这两个圆相交。

40

②设⊙O1的半径为r1,⊙O2半径为r2,圆心距为d,则: 两圆外离 d>r2+r1;

两圆外切 d=r2+r1;

两圆相交 r2-r1<d<r2+r1(r2≥r1);

两圆内切 d=r2-r1(r2>r1);

两圆内含 0≤d<r2-r1(r2>r1)。

(四)圆的切线

1、定义:和圆只有一个公共点的直线是圆的切线。

2、性质:

①圆的切线到圆心的距离等于半径。

②定理:圆的切线垂直于过切点的半径。

③切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

3、判定:

①利用切线的定义。

②到圆心的距离等于半径的直线是圆的切线。

③定理:经过半径的外端并且和这条半径垂直的直线是圆的切线。

(五)圆与三角形

1、三角形的外接圆

(1)定义:经过三角形的三个顶点的圆叫做三角形的外接圆。

(2)三角形外心的性质:①是三角形三条边垂直平分线的交点;②到三角形各顶点距离相等;③外心的位置:锐角三角形外心在三角形内,直角三角形的外心恰好是斜边的中点,钝角三角形外心在三角形外面。

2、三角形的内切圆

(1)定义:与三角形各边都相切的圆叫做三角形的内切圆。

(2)三角形内心的性质:①是三角形角平分线的交点;②到三角形各边的距离相等;③都在三角形内。

(六)圆与四边形

1、由圆周角定理可以得到:圆内接四边形对角互补。

*2、由切线长定理可以得到:圆的外切四边形两组对边的和相等。

(七)圆与正多边形

1、正多边形的定义

各边相等,各角也相等的多边形叫做正多边形,其外接圆的圆心 41

叫做这个正多边形的中心。

2、正多边形与圆的关系

把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形,这时圆叫做正n边形的外接圆。

3、正多边形的有关计算(11个量)

边数n,内角和,每个内角度数,外角和,每个外角度数,中心角αn,边长an,半径Rn,边心距rn,周长ln,面积Sn (Sn=1/2lnrn)

4、正多边形的画法

画正多边形的步骤:首先画出符合要求的圆;然后用量角器或用尺规等分圆;最后顺次连结各等分点。如用尺规等分圆后作正四、八边形与正六、三、十二边形。注意减少累积误差。

(八)弧长、扇形的面积、圆锥的侧面积和全面积公式

l为母线长)

(九)直角三角形的一个判定

如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。

(十)本章常见的辅助线

42 l弧长?180n?R2S扇形=3601lRS=?rl=2 (其中l为弧长) 圆锥侧 (其中

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com