haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

因数与倍数专题

发布时间:2014-01-25 10:59:02  

一、倍数与因数的关系

【知识点1】倍数与因数之间的关系是相互的,不能单独存在。

例如:6是倍数、3和2是因数。(×)改正:6是3和2的倍数,3和2是6的因数。 练习:

(1)8×5=40,( )和( )是( )的因数,( )是( )和( )的倍数。

(2)因为36÷9=4,所以( )是( )和( )的倍数,( )和( )是( )的因数。

(3)在18÷6=3中,18是6的( ),3和6是( )的( )。

(4)在14÷7=2中,( )能被( )整除,( )能整除( ),( )是( )的倍数,( )是( )的因数。

(5)若A÷B=C(A、B、C都是非零自然数),则A是B的( )数,B是A的( )数。

(6)如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的 ,B是A的 。

(7)判断并改正:因为7×6=42,所以42是倍数,7是因数。 ( )

因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。( ) 5是因数,15是倍数。( )

甲数除以乙数,商是15,那么甲数一定是乙数的倍数。 ( )

(8)甲数×3=乙数,乙数是甲数的( )。

A、倍数 B、因数 C、自然数

【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。

例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。 因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。是错误的说法。

练习:

(1)有5÷2=2.5可知( )

A、5能被2除尽 B、2能被5整除 C、5能被2整除 D、2是5的因数,5是2的倍数

(2)36÷5=7……1可知( )

A、5和7是36的因数 B、5能整除36 C、36能被5除尽 D、36是5的倍数

(3)属于因数和倍数关系的等式是( )

A、2×0.25=0.5 B、2×25=50 C、2×0=0

【知识点3】没有前提条件确定倍数与因数

例如:36的因数有( )。

确定一个数的所有因数,我们应该从1的乘法口诀一次找出。如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36重复的和相同的只算一个因数。

一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。

例如:7的倍数( )。

确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……

还有很多。

因此7的倍数有:7、14、21、28、35、42……

一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。

练习:

(1)20的因数有:

(2)45的因数有:

(3)24的倍数有:

(4)17的倍数有:

(5)下面的数,因数个数最多的是( )。

A、18 B、 36 C、40

(6)判断并改正:14比12大,所以14的因数比12的因数多 ( ) 1是1,2,3,4,5… 的因数 ( )

一个数的最小因数是1,最大因数是它本身。 ( )

一个数的最小倍数是它本身 ( )

12是4的倍数,8是4的倍数,12与8的和也是4的倍数。 ( ) 凡是8的倍数也一定是2的倍数。( )

(7)幼儿园里有一些小朋友,王老师拿了32颗糖平均分给他们,正好分完。小朋友的人数 1

可能是多少?

(8)小红到超市买日记本,日记本的单价已看不清楚,他买了3本同样的日记本,售货员

阿姨说应付35元,小红认为不对。你能解释这是为什么吗?

【知识点4】有前提条件的情况下确定倍数与因数

例如:25以内5的倍数有( 5、10、15、20、25 )。特别注意前提条件是25以内!

例如:5、1、20、35、40、10、140、2

以上各数中,是20的因数的数有( );是20的倍数的数有

( );既是20的倍数又是20的因数的数有( )。

首先我们应该明确20的因数有哪些,然后在上面的数中一次找出,特别注意没有在以上数

字中出现的因数是不能填入括号的!

练习:

(1)100以内19的倍数有:

(2)在4,6,8,10,12,16,18,20,22,24,28,32,36 中4的倍数:

36的因数:(3)一个数既是6的倍数,又是60的因数,这个数可能是

(4)用1、5、6、8、9组成的数中,是3的倍数的数有

是2的倍数的数有 。

【知识点3】关于倍数因数的一些概念性问题

一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。

一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。

1是任一自然数(0除外)的因数。也是任一自然数(0除外)的最小因数。

一个数的因数最少有1个,这个数是1。除1以外的任何整数至少有两个因数(0除外)。

一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。

一个数的最小倍数=一个数的最大因数=这个数

练习:

(1)一个数的倍数个数是( ),最小的倍数是( ),( )最大的倍

数。

(2)一个数的因数的个数是( ),最小的因数是( ),最大的因数是

( )。

(3)在研究因数和倍数时,我们所说的数一般指的是( )。

(4)判断并改正:一个数的因数都比他的倍数小。 ( )

1是所有的自然数的因数。 ( )

一个数的因数一定小于他本身。 ( )

一个数的倍数一定比他的因数大。 ( )

任何一个数的倍数个数一定比因数个数多。 ( )

二、2、3、5的倍数的特征

【知识点1】2、3、5的倍数特征

个位上是0,2,4,6,8的数都是2的倍数。例如:202、480、304,都能被2整除。

个位上是0或5的数,是5的倍数。例如:5、30、405都能被5整除。

一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。例如:12、108、204都能

被3整除。

个位上是0的数既是2的倍数又是5的倍数。例如:80、20、70、130等。

个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。例如:

120、90、180、270等。

自然数按能否被2 整除的特征可分为奇数和偶数。也就是说是2的倍数的数也叫做偶数(0

也是偶数),不是2的倍数的数也叫做奇数。(因此在自然数中,除了奇数就是偶数)

偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数

偶数+奇数=奇数 偶数-奇数=奇数 偶数×奇数=偶数

奇数+奇数=偶数 奇数-偶数=奇数 奇数×奇数=奇数

奇数-奇数=偶数 无论多少个偶数相加都是偶数

偶数个奇数相加是偶数 奇数个奇数相加是奇数

练习:

(1)在 27、68、44、72、587、602、431、800中,把奇数和偶数分别填在相应的圈内。

奇数: 偶数:

(2)写出5个3的倍数的偶数: 写出3个5的倍数的奇数:

(3)猜猜我是谁。

我比10小,是3的倍数,我可能是( )。我在10和20之间,又是3和5的倍数,我是( )。

2

我是一个两位数且是奇数,十位数字和个位数字的和是18,我是( )。

(4)一个六位数548( )能同时被3、4、5整除,这样的六位数中最小的一个是( )。

一个四位数698( ),如果在个位上填上数字( )。那么这个数既是2的倍数,又是5的倍数。 117( ) 既是3的倍数,又是5的倍数;249( ) 既是2的倍数,又是3的倍数。

(5)把下面的数按要求填到合适的位置。

435、27、65、105、216、720、18、35、40

2的倍数( );

3的倍数( );

3的倍数( );

2、5的倍数( );

2、3的倍数( );

2、3、5的倍数( )。

(6)同时是2和3的倍数中,最小的是( ),两位数中最大的是( )。 (7)能同时被2、3和5整除的最小三位数是,最大两位数是 ,最小两位数是__,最大三位数是_。

(8)三个连续偶数的和是72,这三个偶数分别是( )、( )和( )。

(9)226至少增加( )就是3的倍数,至少减少( )就是5的倍数。

(10)用5、6、8排成一个三位数且是2的倍数,再排成一个三位数,使他有因数5,各有几种排法?这些数中有3的倍数吗?

(11)在( )里填上一个数,使87( )是3的倍数,共有( )种填法。

A、1 B、2 C、3 D、4

最小的四位奇数比最大的三位偶数大( )。

、13 C、3

是一个三位数,已知A+B=14,且是3( )个。 A、1 B、2 C、3 D、4

(12)判断并改正:两个奇数的和,可能是偶数。( )

最小的奇数是1,最小的偶数是2.( )

一个自然数不是奇数就是偶数。( )

个位上是3、6、9的数都是3的倍数。( )

是3的倍数的数一定是9的倍数,是9的倍数的数一定是3的倍数。( ) 偶数的因数一定比奇数的因数多。 ( )

【知识点2】一些特殊数的倍数的特征

一个数各位数上的和能被9整除,这个数就是9的倍数。

但是,能被3整除的数不一定能被9整除;能被9整除的数一定能被3整除。

一个数的末两位数能被4整除,这个数就是4的倍数。例如:16、404、1256都是4的倍数。 一个数的末两位数能被25整除,这个数就是25的倍数。例如:50、325、500、1675都是25的倍数。

一个数的末三位数能被8(或125)整除,这个数就是8(或125)的倍数。例如:1168、4600、5000、12344都是8的倍数,1125、13375、5000都是125的倍数。

如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数

如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数

练习:

(1)五位数□153□能同时被5和9整除,这样的六位数有( )、( )。

(2)六位数□1576□能同时被55整除,这样的六位数有( )、( )。

(3)一个比20小的偶数,他有因数3,又是4的倍数,这个数是( )。

【知识点3】最大公因数与最小公倍数

由于一个数的因数个数是有限的而且最大的因数是这个数本身,最小的因数都是1.因此,几个数公共的因数也只考虑其最大的公共因数,而不考虑最小的公共因数。

例如:12、16、18的最大公因数

12的因数有:1、2、3、4、6、12

16的因数有:1、2、4、8、16 公共得因数有:1、2 18的因数有:1、2、3、6、9、18

因此12、16、182

练习:

(1)12的约数有( );18的约数有( );其中( )是12和 18的公约数;它们的最大公约数是( )。 3

(2)求下面数的最大公约数

24和36 54和72 7和63 12、18、36

(3)长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)多少块?

(4)动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得多少粒.

同样由于一个数的倍数个数是无限的,但其最小的倍数是他本身,因此在求几个数的公倍数时只能考虑其最小的公共倍数。

例如:2、4、5的最小公倍数

2的倍数有:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、……

4的倍数有:4、8、12、16、20、24、28、32、36、40、……

5的倍数有:5、10、15、20、25、30、35、40、……

公共的倍数有:20、40…… 所以2、4、5的最小公倍数是:20

练习:

(1)写出100以内的4的倍数有( );100以内的6的倍数有( );它们的公倍数有( );它们的最小公倍数是( )。

(2)210与330的最小公倍数是最大公约数的_____倍.

(3)是2、3、5的倍数的最小三位数是( )。一个数是5的倍数,又有因数3,也是7的倍数,这个数最小是( )。

(4)求下面数的最小公倍数

12和18 13和11 13.和65 6、7、21

(5)一串珠子,5粒5粒数,6粒6粒数,7粒7粒数,8粒8粒数都正好数完,这串珠子至少有多少粒?

(6)在1~1999中的自然数中,是3的倍数,又是5的倍数的数一共有多少个?

(7)能被3、7、8、11四个数同时整除的最大六位数是多少?

(8)一堆棋子,6个6个地数余4个,9个9个地数余4个,10个10个地数余8个,这堆棋子至少有多少个?

(10)判断并改正:有因数2,同时又是5的倍数的数一定是10的倍数。( )

三、质数和合数

【知识点1】质数和合数的相关定义

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其因数的个数的不同分类,可分为质数(两个因数)、合数(大于两个因数)和1(1个因数)。

100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。共25个。

除1

除1以外任意两个质数的和都是偶数

最小的质数是2,最小的合数是质数×质数=合数 合数×合数=合数 质数×合数=合数

练习:

(1)像2、3、5、7这样的数都是( ),像10、6、30、15这样的数都是( )。

(2)20以内的质数有( ),合数有( )。

(3)自然数( )除外,按因数的个数可以分为( )、( )和( )。

(4)在16、23、169、31、27、54、102、111、97、121这些数中,( )是质数,( )是合数。

(5)用A表示一个大于1的自然数,A2必定是( )。A+A必定是( )。

(6)一个四位数,个位上的数是最小的质数,十位上是最小的自然数,百位上是最大的一位数,最高位上是最小的合数,这个数是( )。

(7)两个连续的质数是( )和( );两个连续的合数是( )和( )

(8)两个质数的和是12,积是35,这两个质数是( )

A. 3和8 B. 2和9 C. 5和7

(9)判断并改正:一个自然数不是质数就是合数。( )

所有偶数都是合数。( )

4

一个合数的因数的个数比一个质数的因数的个数多。( )

所有质数都是奇数。( )

两个不同质数的和一定是偶数。( )

三个连续自然数中,至少有一个合数。( )

大于2的两个质数的积是合数。( )

7的倍数都是合数。( )

20以内最大的质数乘以10以内最大的奇数,积是171。( )

2是偶数也是合数。( )

1是最小的自然数,也是最小的质数。( )

最小的自然数,最小的质数,最小的合数的和是7。( )

(10)下面是一道有余数的整数除法算式:A÷B=C… R

1既不是质数也不是合数。 ( ) 个位上是3的数一定是3的倍数。( ) 所有的偶数都是合数。 ( ) 所有的质数都是奇数。 ( ) 两个数相乘的积一定是合数。 ( )

(11)写出一些三位数,这些数都同时是2、3、5的倍数。(每种写两个数)(6%)

①有两个数字是质数:

②有两个数字是合数:

③有两个数字是奇数:

【知识点2】分解质因数(相加和相乘)

把一个合数分成几个质数相乘的形式,叫做分解质因数。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,

例如15=3×5,3和5 叫做15的质因数。

分解质因数,应该从最小的质数开始试积,直到每个因数都是质数时为止。

例如:24=2×12 24=3×8

26

因此24=2×2×2× 24

42=(2)+(40)=(3)+(39)=(5)+(37)

(1)把48、51、28用几个质数相乘的形式分别表示出来。

(2)下列的数可以用那两个质数的和表示,并总结规律。

9=( )+( ) 42=( )+( )

38=( )+( ) 80=( )+( )

50=( )+( ) 62=( )+( )

(3)用质数填空,质数不能重复

18=( )+( )=( )+( )=( )+( )+( ) 12=( )×( )×( ) 30=( )×( )×( ) 8=( )×( )×( )

4)100以内的哪些数是三个不同质数的积?

【知识点3】确定数字

这类题关键在于准确掌握有关倍数、因数、奇数、偶数、质数、合数以及一些特殊的数。 例如:两个质数的和是25,这两个质数的差是多少?

首先将25分解成两个质数的和的形式:

25=2+23=3+22=5+20=7+18=11+14=13+12=17+8=19+6

√ × × × × × × ×

通过分解只有2和23一种情况,因此这两个质数的差是23-2=21

练习:

(1)一个四位数,个位上的数是最小的奇数,十位上的数是最小的偶数,百位上的数是最

(2)猜电话号码0592提示:A——5 C——5的最大因数 D——它既是4的倍数,又是4的因数E——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数这个号码就是

(3)1+2+3+……+999+1000+1001的和是奇数还是偶数?请写出理由。

(4)有两个质数,和是18,积是65,这两个质数是( )和( )。

(5)在100~150中,找出两个整数,使它们相乘的积等于91和187的乘积,这两个数分别是( )和( )。

(6)连续五个奇数的积的末位数是( )。

5

(7)两数相加的和是最大的两位数,两数相减的差是大于90的最小质数,那么这两个数的积是( )。

(8)三个连续自然数的乘积是720,这三个数是( )、( )和( )。

(9)把六个数:85、51、33、91、65、77分成两组,每组三个数,每组中三个数的乘积相等。写出其中一个组的三个数( )

(10)一个数的最大因数和最小倍数相加等于62,这个数是( )

(11)一个数是18的倍数,它又是18的因数,猜一猜,这个数是( )。

(12)一个数是48的因数,这个数可能是( )

一个数既是48的因数,又是8的倍数,这个可能是( )

一个数既是48的因数,又是8的倍数,同时还是3的倍数,这个数是( ) *短除法:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如:把18分解质因数为18=2×3×3

2 18 24

3 9 3 9 12

18=2×3×3 18和24的最大公因数是2×3=6, 18和24的最小公倍数是2×3×3×4=72

7. 偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数 偶数+奇数=奇数 偶数-奇数=奇数 偶数×奇数=偶数 奇数+奇数=偶数 奇数-偶数=奇数 奇数×奇数=奇数 奇数-奇数=偶数 无论多少个偶数相加都是偶数 6

上一篇:计算题1
下一篇:迷你小题17、18
网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com