haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

最大公约数与最小公倍数

发布时间:2013-09-25 08:01:07  

最大公因数与最小公倍数

专题简析:

1.几个整数公有的约数,叫做这几个数的公约数,其中最大的一个公约数,叫做这个数的最大公约数。一般地,把自然数a和b的最大公约数记为(a,b)。

2.几个整数公有的倍数,叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。一般地,把自然数a和b的最小公倍数记为[a,b]。

3.当(a,b)=1时,我们称a和b互质,此时,[a,b]=a×b。

特别的指出,两个连续的自然数互质;两个连续的奇数互质。

1

性质

1. 如果a与b互质,那么a和b的最大公约数是1,最小公倍数是ab。

2. 如果a是b的整数倍,那么a和b的最大公约数是b,最小公倍数是a(a、b为整数)。

3. 两个数分别除以它们的最大公约数,所得的商是互质数。 4. 两个数的公约数是它们最大公约数的约数。

5. 如果a〉b,那么a±b与b的最大公约数就等于a与b的最大公约数。

6. 两个数的最大公约数与最小公倍数的积等于这两个数的积。

(a,b)×[a,b]=a×b

典型例题与练习

求几个数的最大公约数可以用分解质因数和短除法等方法

例1 一张长方形的纸,长7分米5厘米,宽6分米。现在要把它裁成一块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?

分析 7分米5厘米=75厘米,6分米=60厘米。因为裁成的正方形的边长必须能同时整除75和60,所以边长是75和60的公约数。75和60的公约数有1、3、5、15,所以有4种裁法。

如果要使正方形面积最大,那么边长也应该最大,应该取75和60的最大公约数15作为正方形的边长,所以可以裁(75÷15)×(60÷15)=20块。

分析 2.7米=270厘米,1.8分米=18厘米,1.5分米=15厘米。要把长方体切成大小相等的正方体,不许有剩余,正方体的棱长应该是长、宽、高的公约数。现要求正方体的棱长最大,所以棱长就是长、宽、高的最大公约数。

(270,18,15)=3, 3厘米=0.3分米 练习二

1,一个长方体木块的长是4分米5厘米、宽3分米6厘米、高2分米4厘米。要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?

2,有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?

3,五年级三个班分别有24人、36人、42人参加体育活动,要把他们分成人数相等的小组,但各班同学不能打乱,最多每组多少人?每班各可以分几组?

练习一

1,把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?

2,一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?

3,将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?

例2 一个长方体木块,长2.7米,宽1.8分米,高1.5分米。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?

2

例3

一个数除200余4;除300余6;除500余10.求这个数最大是多少?

练习三

1、一个数除150余6,除250余10,除350余14,这个数最大是多少?

2、工人加工了三批零件,每加工一批零件,除了王师傅比其他工人多加工若

干个外,其他工人加工的都同样多。已知他们第一批共加工2100个,其中王师傅比每个工人多加工7个;第二批加工1800个,其中王师傅比每个工人多加工6个;第三批加工1600个,其中王师傅比每个工人多加工13个。这批工人最多有多少人?

2,一块三角形地,要在三条边上按等距离插红旗(三个顶点必须各插一面),要使插的面数最少,应该准备多少面红旗?

48米 米

乙 54米 丙

例4 一条道路由甲村经过乙村到丙村。已知甲、乙村相距360米,乙、丙村相距675米。现在准备在路边裁树,要求相邻两棵树之间距离相等,并在甲、乙两村和乙、丙两村的中点都要种上树,求相邻两棵树之间的距离最多是多少米?

分析 由于甲乙、乙丙的两村中点各要种上一棵树,所要要将360÷2=180米、675÷2=337.5米平均分成若干段,并且使每段的长度最长。因为(675、360)=45,而180=360÷2,337.5=675÷2,所以,45÷2=22.5,即相邻两棵树之间距离最多是22.5米。

练习四

1,一条公路由A经B到C。已知A、B相距300米,B、C相距215米。现在路边植树,要求相邻两树间的距离相等,并在B点及AB、BC的中点上都要植一棵,那么两树间的距离最多有多少米?

3

3,甲数是36,甲、乙两数的最小公倍数是288,最大公约数是4,乙数是多少?

例5 用一张长1072毫米、宽469毫米的长方形纸,剪成面积相等的正方形,并且最后没有剩余,这些正方形的边长最长是多少?

分析 前面的例题已经告诉了我们,解决这道题只要求出长方形长和宽的最大公约数就行了。但是这题中,长和宽的数比较大,最大公约数比较难求出,这里再介绍一种求两个数的最大公约数的方法。

第一步:1072÷469,余134; 第二步:469÷134,余67;

第三步:134÷67,没有余数,所以用67毫米为正方形的边长来剪,正好能剪(1072÷67)×(469÷67)=112个正方形,即这些正方形的边长最大是67毫米。

这种求两个较大数的最大公约数的方法叫辗转相除法。

练习五

1,用辗转相除法求568和1065的最大公约数。

2,试用辗转相除法判断1547与3135是否互质。

3,判断11111/15015是不是最简分数。

最小公倍数(一)

要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通过就是求最小公倍数,解题时要避免和最大公约数问题混淆。

例题1 两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?

分析 根据“两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积”可先求出这两个数的乘积,再把这个积分解成两个数。根据题意:

4

当a1 b1分别是1和6时,a、b分别为15×1=15,15×6=90;当a1。b1分别是2和3时,a、b分别为15×2=20,15×3=45。所以,这两个数是15和90或者30和45。 练习一

1,两个数的最大公约数是9,最小公倍数是90,求这两个数分别是多少?

2,两个数的最大公约数是60,最小公倍数是720,其中一个数是180,另一个数是多少?

例题2 两个自然数的积是360,最小公倍数是120,这两个数各是多少?

分析 我们把这两个自然数称为甲数和乙数。因为甲、乙两数的积一定等于甲、乙两数的最大公约数与最小公倍数的积。根据这一规律,我们可以求出这两个数的最大公约数是360÷120=3。又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数,所以,a和b可以是1和40,也可以是5和8。当a和b是1和40时,所求的数是3×1=3和3×40=120;当a和b是5和8时,所求的数是3×5=15和3×8=24。 练习二

1,求36和24的最大公约数和最小公倍数的乘积。

2,已知两个数的积是3072,最大公约数是16,求这两个数。

3,已知两个数的最大公约数是13,最小公倍数是78,求这两个数的差。

例题3 甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次。甲3天去一次,乙4天去一次,丙5天去一次。有一天,他们三人恰好在图书馆相会,问至少再过多少天他们三人又在图书馆相会?

分析 从第一次三人在图书馆相会到下一次再次相会,相隔的天数应该是3、4、5的最小公倍数。因为3、4、5的最小公倍数是60,所以至少再过60天他们三人又在图书馆相会。 练习三

1,1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。当这三种路线的车同时发车后,至少要过多少分钟又这三种路线的车同时发车?

2,甲、乙、丙从同一起点出发沿同一方向在圆形跑道上跑步,甲跑一圈用120秒,乙跑一圈用80秒,丙跑一圈用100秒。问:再过多少时间三人第二次同时从起点出发?

3,五年级一班的同学每周一都要去看军属张爷爷,二班的同学每6天去看一次,三班的同学每两周去看一次。如果“六一”儿童节三个班的同学同一天去看张爷爷,那么,再过多少天他们三个班的同学再次同一天去张爷爷家?

例题4 一块砖长20厘米,宽12厘米,厚6厘米。要堆成正方体至少需要这样的砖头多少块?

分析 把若干个长方体叠成正方体,它的棱长应是长方体长、宽、高的公倍数。现在要求长方体砖块最少,它的棱长应是长方体长、宽、高的最小公倍数,求出正方体棱长后,再根据正方体与长方体体积之间的关系就能求出长方体砖的

5

块数。

练习四

1,用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?

2,有200块长6厘米、宽4厘米、高3厘米的长方体木块,要把这些木块堆成一个尽可能大的正方体,这个正方体的体积是多少立方厘米?

3,一个长方体长2.7米、宽1.8分米、高1.5分米,要把它切成大小相等的正方体小块,不许有剩余,这些小正方体的棱长最多是多少分米?

例题5 甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一地点同时同方向跑步,经过多少时间三人又同时从出发点出发? 分析 甲跑一圈需要600÷3=200秒,乙跑一圈需要600÷4=150秒,丙跑一圈需要600÷2=300秒。要使三人再次从出发点一齐出发,经过的时间一定是200、150和300的最小公倍数。200、150和300的最小公倍数是600,所以,经过600秒后三人又同时从出发点出发。 练习五

1,有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇;若二人同时同地出发,同向而行,则10分钟后第一次相遇。已知甲比乙快,求二人的速度。

2,一环形跑道长240米,甲、乙、丙从同一处同方向骑车而行,甲每秒行8米,乙每秒行6米,丙每秒行5米。至少经过几分钟,三人再次从原出发点同时出发?

3,甲、乙、丙三人在一条长240米的跑道上来回跑步,甲每秒跑4米,乙每秒跑5米,丙每秒跑3米。若三人同时从一端出发,再经过多少时间三人又从此处同时出发?

最小公倍数(二)

专题简析:

最小公倍数的应用题,解题方法比较独特。当有些题中所求的数不正好是已知数的最小公倍数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数,从而求出结果。

例题1 有一个自然数,被10除余7,被7除余4,被4除余1。这个自然数最小是多少?

分析 根据已知条件可知,假如把这个自然数增加3,所得的数就正好能被10、7和4这三个数整除,即10、7和4的最小公倍数,然后再减去3就能得到所求的数了。

[10,7,4]=140 140-3=137

即:这个自然数最小是137。 练习一

1,学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少多少人?

2,一个数能被3、5、7整除,但被11除余1。这个数最小是多少?

3、有一种自然数,它加1是2的倍数,加2是3的倍数,加3是4的倍 数,加4是5的倍数,加5是6的倍数,加6是7的倍数。则这种自然 数中除1以外,最小数是多少?

6

4,一袋糖,平均分给15个小朋友或20个小朋友后,最后都余下5块。这袋糖至少有多少块?

例题2 有一批水果,总数在1000个以内。如果每24个装一箱,最后一箱差2个;如果每28个装一箱,最后一箱还差2个;如果每32个装一箱,最后一箱只有30个。这批水果共有多少个?

分析 根据题意可知,这批水果再增加2个后,每24个装一箱,每28个装一箱或每32个装一箱都能装整箱数,也就是说,只要把这批水果增加2个,就正好是24、28和32的公倍数。我们可以先求出24、28和32的最小公倍数672,再根据“总数在1000以内”确定水果总数。

[24,28,32]=672 672-2=670(个) 即:这批水果共有670个。 练习二

1,一所学校的同学排队做操,排成14行、16行、18行都正好能成长方形,这所学校至少有多少人?

2,有一批乒乓球,总数在1000个以内。4个装一袋、5个装一袋或6个、7个、8个装一袋最后都剩下一个。这批乒乓球到底有多少个?

3,食堂买回一些油,用甲种桶装最后一桶少3千克,用乙种桶装最后一桶只装了半桶油,用丙种桶装最后一桶少7千克。如果甲种桶每桶能装8千克,乙种桶每桶能装10千克,丙种桶每桶能装12千克,那么,食堂至少买回多少千克油?

例题3 一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?

分析 由已知条件可知:这盒棋子只要增加1颗,就正好是4、6、15的公倍数。换句话说,这盒棋子比4、6、15的最小公倍数少1。我们可以先求4、6、15的最小公倍数,然后再根据“这盒棋子在150至200颗之间”这一条件找出这盒棋子数。4、6、15的最小公倍数是60。 60×3-1=179颗,即这盒棋子共179颗。

练习三

1,有一批树苗,9棵一捆多7棵,10棵一捆多8棵,12棵一捆多10棵。这批树苗数在150至200之间,求共有多少棵树苗。

2,五(1)班的五十多位同学去大扫除,平均分成4组多2人,平均分成5组多3人。请你算一算,五(1)班有多少位同学?

3,有一批水果,每箱放30个则多20个,每箱放35个则少10个。这批水果至少有多少个?

例题4 从学校到少年宫的这段公路上,一共有37根电线杆,原来每两根电线杆之间相距50米,现在要改成每两根之间相距60米,除两端两根不需移动

7

外,中途还有多少根不必移动?

分析 从学校到少年宫的这段路长50×(37-1)=1800米,从路的一端开始,是50和60的公倍数处的那一根就不必移动。因为50和60的最小公倍数是300,所以,从第一根开始,每隔300米就有一根不必移动。1800÷300=6,就是6根不必移动。去掉最后一根,中途共有5根不必移动。 练习四

1,插一排红旗共26面。原来每两面之间的距离是4米,现在改为5米。如果起点一面不移动,还可以有几面不移动?

2,一行小树苗,从第一棵到最后一棵的距离是90米。原来每隔2米植一棵树,由于小树长大了,必须改为每隔5米植一棵。如果两端不算,中间有几棵不必移动?

3,学校开运动会,在400米环形跑道边每隔16米插一面彩旗,一共插了25面。后来增加了一些彩旗,就把彩旗间隔缩短了,起点彩旗不动,重新插完后发现一共有5面彩旗没动。问:现在彩旗的间隔是多少米?

例题5 在一根长木棍上用红、黄、蓝三种颜色做标记,分别将木棍平均分成了10等份、12等份和15等份。如果沿这三种标记把木棍锯断,木棍总共被锯成多少段?

分析 因为10、12和15的最小公倍数是60,所以,设这根木棍长60厘米。三种颜色的标记分别把木棍分成的小段长是60÷10=厘米,60÷12=5厘米,60÷15=4厘米。因为5和6的最小公倍数是30,所以红黄两种标记重复的地方

有60÷30-1=1处,另两种情况分别有2处和4处。因此,木棍总共被锯成(10+12+15-2)-1-2-4=28段。

练习五

1,用红笔在一根木棍上做了三次记号,第一次把木棍分成12等份,第二次把棍分成15等份,第三次把木棍分成20等份,然后沿着这些红记号把木棍锯开,一共锯成多少小段?

2,父子二人在雪地散步,父亲在前,每步80厘米,儿子在后,每步60厘米。在120米内一共留下多少个脚印?

3,在96米长的距离内挂红、绿、黄三种颜色的气球,绿气球每隔6米挂一个,黄气球每隔4米挂一个,。如果绿气球和黄气球重叠的地方就改挂一个红气球,那么,除两端外,中间挂有多少个红气球?

一、1、一次会餐,每两人合用一只饭碗,三人合用一只菜碗,四人合用一只 2、小明的储蓄罐里存有2分和5分的硬币,他把这些硬币倒出来,估计有五六元钱,小明把这些硬币分成钱数相等的两堆,第一堆2分和5分的硬币个数相等;第二堆2分和5分的钱数相等。你知道小明存了多少钱吗?

3、53,27和42三个数被同一个数除,所得商的和为9,余数和为14,求各自的商及余数。

汤碗。会餐共用了65只碗,问:参加会餐的人数是多少?

8

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com