haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

初中数学竞赛教程及练习之因式分解附答案

发布时间:2014-04-19 14:06:58  

因式分解

一、内容提要 和例题

我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法

添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式

例1因式分解:①x4+x2+1 ②a3+b3+c3-3abc

①分析:x4+1若添上2x2可配成完全平方公式

解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)

②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2

解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2

=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

例2因式分解:①x3-11x+20 ② a5+a+1

分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里16是完全平方数)

解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)

=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)

分析:添上-a2 和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式

解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1

=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)

运用因式定理和待定系数法

定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a

⑵若两个多项式相等,则它们同类项的系数相等。

例3因式分解:①x3-5x2+9x-6 ②2x3-13x2+3

①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次

因式,然后用除法或待定系数法,求另一个因式。

解:∵x=2时,x3-5x2+9x-6=0,∴原式有一次因式x -2,

∴x3-5x2+9x-6=(x -2)(x2-3x+3,)

②分析:用最高次项的系数2的约数±1,±2分别去除常数项3的约数.①②③.

±1,±3得商±1,±2,±

可知只有当x=

解:∵x=13,±,再分别以这些商代入原式求值,221时,原式值为0。故可知有因式2x-121时,2x3-13x2+3=0,∴原式有一次因式2x-1, 2

设2x3-13x2+3=(2x-1)(x2+ax-3), (a是待定系数)

比较右边和左边x2的系数得 2a-1=-13, a=-6

∴2x3-13x+3=(2x-1)(x2-6x-3)。

例4因式分解2x2+3xy-9y2+14x-3y+20

解:∵2x2+3xy-9y2=(2x-3y)(x+3y), 用待定系数法,可设

2x2+3xy-9y2+14x-3y+20=(2x-3y+a)(x+3y+b),a,b是待定的系数,

比较右边和左边的x和y两项 的系数,得

1

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com