haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

第十一讲 写出所有可能的情况(二)

发布时间:2014-05-06 13:59:01  

第十一讲 考虑所有可能情况(二)

例1 象右边竖式那样十位数字和个位数字顺序相颠倒的一对二位数相加之和是99,问这样的两位数共有多少对?

解:不难看出,这样的两位数共有4对,它们是:(18,81),(27,72),(36,63),(45,

54).

例2一些十位数字和个位数字相同的二位数可以由十位数字和个位数字不同的两个二位数相加得到,如12+21=33(人们通常把12和21这样的两个数叫做一对倒序数).问在100之内有多少对这样的倒序数?

解:十位数字和个位数字相同的二位数有:11、22、33、44、55、66、77、88、99九个.其中11和22都不能由一对倒序数相加得到.其他各数的倒序数是:

33:12和21???????????????? 1对

44:13和31???????????????? 1对

55:14和41、23和32??????????? 2对

66:15和51、24和42??????????? 2对

77:16和61、25和52、34和43??????? 3对

88:17和71、26和62、35和53???????3对

99∶18和81、27和72、36和63、45和54?4对

总数=1+1+2+2+3+3+4=16对.

例3规定:相同的字母代表同一个数字,不同的字母代表不同的数字.请问,符合下面的算式的数字共有多少组?

解:分两步做.第一,先找出被乘数的个位数字A和乘数A相乘时,积的个位数是A的所有可能情况:

第二,从中选出能满足题目要求的数:积的十位数字和被乘数的十位数字B相同.经试

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com