haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

给聪明的孩子:小学六年级数学竞赛模拟试卷(31套)

发布时间:2014-05-24 15:05:12  

小学六年级数学竞赛模拟试卷(10套)

模拟试卷.1 姓名 得分

一、填空题:

3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.

5.图中空白部分占正方形面积的______分之______.

6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.

7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.

8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.

9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.

10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).

二、解答题:

1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?

2.数一数图中共有三角形多少个?

3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.

模拟试卷.2 姓名 得分

一、填空题:

1.用简便方法计算:

2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.

3.算式:

(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).

4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.

5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.

6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.

7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.

8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.

9.在下面16个6之间添上+、-、×、÷、(),使下面的算式成立:

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997

二、解答题:

1.如图中,三角形的个数有多少?

2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?

3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?

4.在九个连续的自然数中,至多有多少个质数?

模拟试卷.3 姓名 得分

一、填空题:

1.用简便方法计算下列各题:

(2)1997×19961996-1996×19971997=______;

(3)100+99-98-97+?+4+3-2-1=______.

2.上右面算式中A代表_____,B代表_____,C代表

_____,D代表_____(A、B、C、D各代表一个数字,且互不相同).

3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.

4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.

5.在乘积1×2×3×?×98×99×100中,末尾有______个零.

6.如图中,能看到的方砖有______块,看不到的方砖有______块.

7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.

8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.

9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.

10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.

二、解答题:

1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸

(1)若P点在岸上,则A点在岸上还是水中?

(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.

2. 将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,

1 5 6 7 8 9 10 11 12 13 14 15

20

25 26 27 28 29 30

35 40 41 42 43 44 45

46 47 48 49 50 55 56 57 58 59 60

? ? ? ? ? ? ?

?

? ? ? ? ? ? ?

3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?

4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.

模拟试卷.4 姓名 得分

一、填空题:

1.41.2×8.1+11×9.25+537×0.19=______.

2.在下边乘法算式中,被乘数是______.

3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.

4.图中多边形的周长是______厘米.

5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.

6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.

7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.

8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.

9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.

10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.

二、解答题:

1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.

2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.

3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?

4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?

(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?

(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?

模拟试卷.5 姓名 得分

一、填空题:

1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.

2.把0,1,2,?,9十个数字填入下面的小方格中,使三个算式都成立:

□+□=□

□-□=□

□×□=□□

3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.

4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.

5.图中有______个梯形.

6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.

7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.

8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.

9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.

10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.

二、解答题:

1.字母A、B、C、D、E和数字2003分别按下列方式变动其次序:

A B C D E 2 0 0 3 B C D E A 0 0 3 2(第一次变动) C D E A B 0 3 2 0(第二次变动) D E A B C 3 2 0 0(第三次变动) ??

问最少经过几次变动后A B C D E 2 0 0 3将重新出现?

2.把下面各循环小数化成分数:

3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?

4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?

模拟试卷.6 姓名 得分

一、填空题:

1.如果A=11111103333332,B= ,那么A与B中较大的数是 。 22222216666665

2.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.

33.三个分数的和是3,它们的分母相同,分子的比为2∶2∶4,则8

最大的分数为______.

4.如下左图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.

5.在上面的式子中,字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.

1 6.一仓库有煤若干千克,三天用完。第一天用去 ,第二天用去余下5

25的,第三天用去的比前两天总和的少18千克,则共有煤 千克。 58

7.如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,则所得物体的表面积为______.

8.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.

10.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.

二、解答题:

1.求在8点几分时,时针与分针重合在一起?

2.如图中数字排列:

问:第20行第7个是多少?

3.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?

4.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?

模拟试卷.7 姓名 得分

一、填空题:

2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.

么回来比去时少用______小时.

4.7点______分的时候,分针落后时针100度.

5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.

7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人

8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.

9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.

10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.

二、解答题:

1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?

2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n是多少?

3.自然数如下表的规则排列:

求:(1)上起第10行,左起第13列的数;

(2)数127应排在上起第几行,左起第几列?

4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由. 模拟试卷.8 姓名 得分

一、填空题:

2.在下列的数字上加上循环点,使不等式能够变正确: 0.9195<0.9195<0.9195<0.9195<0.9195

3.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,?,OA11,图中共有______个三角形.

4.今年小宇15岁,小亮12岁,_____年前,小宇和小亮的年龄和是15.

5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.

6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.

7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长

2方形(阴影部分)的面积是______cm.

8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG边长是______.

9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.

10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).

二、解答题:

1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?

2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?

3.能否把1,1,2,2,3,3,?,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,??两个50之间夹着这100个数中的50个数?并证明你的结论.

4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?

模拟试卷.9 姓名 得分

一、填空题:

1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,

(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.

2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.

3.填写下面的等式:

4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.

5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:

则被乘数为______.

6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.

7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.

8.10点15分时,时针和分针的夹角是______.

9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.

10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.

二、解答题:

1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.

2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.

3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.

4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?

模拟试卷.10 姓名 得分

一、填空题:

1.29×12+29×13+29×25+29×10=______.

2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于

24.______.

______页.

4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).

5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.

6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.

7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.

8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.

9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.

10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.

二、解答题:

1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?

2.第一口木箱里有303只螺帽,第二口木箱里的螺帽是全部螺帽的1n ,第三口木箱里的螺帽占全部螺帽的(n是整数)。问:三口木箱中57

的螺帽共有多少个?

3.某商店同时出售两件商品, 售价都是600元,一件是正品, 可赚20%; 另一件是处理品, 要赔20%,以这两件商品而言,是赚,还是赔?

4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?

模拟试卷.11 姓名 得分

一、填空题:

2.下面三个数的平均数是170,则圆圈内的数字分别是: ○;○9;○26.

于3,至少要选______个数.

4.图中△AOB的面积为15cm2,线段OB的长度为OD

的3倍,则梯形ABCD的面积为______.

5.有一桶高级饮料,小华一人可饮14天,若和小芳同饮则可用10天,若小芳独自一人饮,可用______天.

6.在1至301的所有奇数中,数字3共出现_______次.

7.某工厂计划生产26500个零件,前5天平均每天生产2180个零件,由于技术革新每天比原来多生产420个零件,完成这批零件一共需要_______天.

8.铁路与公路平行.公路上有一个人在行走,速度是每小时4千米,一列火车追上并超过这个人用了6秒.公路上还有一辆汽车与火车同向行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度为______,长度为______.

9.A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次,得到下面4个数:23,26,30,33,A、B、C、D4个数的平均数是______.

10.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒,???(连续奇数),就调头爬行.那么,它们相遇时,已爬行的时间是______秒.

二、解答题:

1.小红见到一位白发苍苍的老爷爷,她问老爷爷有多大年岁?老爷爷说:把我的年龄加上10用4除,减去15后用10乘,结果正好是100岁.请问这位老爷爷有多大年龄?

数最小是几?

3.下图中8个顶点处标注数字a,b,c,d,e,f,g,h

,其

f+g+h)的值.

4.底边长为6厘米,高为9厘米的等腰三角形20个,迭放如下图:

每两个等腰三角形有等距离的间隔,底边迭合在一起

的长度是44厘米.回答下列问题:

(1)两个三角形的间隔距离;

(2)三个三角形重迭(两次)部分的面积之和;

(3)只有两个三角形重迭(一次)部分的面积之和;

(4)迭到一起的总面积.

模拟试卷.12 姓名 得分

一、填空题:

2.“趣味数学”表示四个不同的数字:

则“趣味数学”为_______.

正好是第二季度计划产量的75%,则第二季度计划产钢______吨.

个数字的和是_______.

积会减少______.

6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______

7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3

天,

则这批零件共有______个.

8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.

9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入

位数是______.

二、解答题:

1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.

2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?

3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.

4.有一列数2,9,8,2,6,?从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字是2.问这一列数第2003个数是几?

模拟试卷.13 姓名 得分

一、填空题:

2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.

3.在下图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.

4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.

5.如上右图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,??,二十层的图案用火柴棍______支.

6.在下左图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).

7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.

8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.

甲说:“我头两发共打了8环.”

乙说:“我头两发共打了9环.”

那么唯一的10环是______打的.

9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋子占全部黑棋子2的 ,把这三堆棋子集中在一起,白棋子占全部棋子的_______分之5

_______.

10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名.

二、解答题:

1.计算:

2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?

3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?

4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.

模拟试卷.14 姓名 得分

一、填空题:

2.某单位举办迎春会,买来5箱同样重的苹果,从每箱取出24千克苹果后,结果各箱所剩的苹果重量的和恰好等于原来一箱的重量,那么原来每箱苹果重_______千克.

3.有5分、1角、5角、1元的硬币各一枚,一共可以组成______种不同的币值.

4.有500人报考的入学考试,录取了100人,录取者的平均成绩与未录取者的平均成绩相差42分,全体考生的平均成绩是51分,录取分数线比录取者的平均分少14.6分,那么录取分数线为______.

5.A、B、C、D分别代表四个不同的数字,依下列除式代入计算:

结果余数都是4,如果B=7,C=1,那么A×D=_______.

6.某校师生为贫困地区捐款1995元,这个学校共有35名教师,14个教学班,各班学生人数相同且多于30人,不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款______元.

7.数一数,图中包含小红旗的长方形有______个.

8.在3时与4时之间,时针与分针在______分处重合.一昼夜24小时,时针与分针重合______次.

9.如图,大长方形的面积是小于200的整数,它的内部有三个边长

10.将自然数按如下顺序排列:

在这样的排列下,9排在第三行第二列,

那么2003排在第______行第______列.

二、解答题:

1.计算:

2.5个工人加工735个零件,2天加工了135个,已知2天中有1人因事请假1天,照这样的工作效率,如果以后几天无人请假,还要多少天才能完成任务?

3.老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,

?,

4.甲、乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈.跑第一圈时,乙的速度是甲

条椭圆形跑道长多少米?

模拟试卷.15 姓名 得分

一、填空题:

1.[47-(18.75-1÷)×2÷0.46= .

2.筐中有120个苹果,将它们全部都取出来,分成偶数堆,使得每堆的个数相同,有_______种分法.

3.小红上个月做了六次测验,第三、四次的平均分比前两次的平均分多1分,比后两次的平均分少2分.如果后三次平均分比前三次的平均分多3分,那么第四次比第三次多得______分.

815625

原来的______.

5.小明家有若干只小鸡和小兔,已知鸡兔的头数与鸡兔的脚数之比是41∶99,那么小鸡与小兔的只数之比是_______.

6.如下图,已知长方形ABCD的面积是24平方厘米,三角形ABE的面积是5平方厘米,三角形AFD的面积是6平方厘米,那么三角形AEF的面积是______平方厘米.

7.上面是一个残缺的算式,所有缺的数字都不是1,那么被除数是______.

8.今年是1997年,父母的年龄(整数)和是78岁,姐弟的年龄(整数)和是17岁,四年后父的年龄是弟的年龄的4倍,母的年龄是姐的年龄的3倍,那么当父的年龄是姐的年龄的3倍时是公元______年.

9.一件工作,甲每天做8小时30天能完成,乙每天做10小时22天就能完成.甲每做6天要休息一天,乙每做5天要休息一天,现两队合做,每天都做8小时,做了13天(包括休息日在内)后,由甲独做,每天做6小时,那么完成这项工作共用了______天.

10.有一串数1,1,2,3,5,8,?,从第三个数起,每个数都是前两个数之和,在这串数的前1997个数中,有______个是5的倍数.

二、解答题:

2.有三块长方形菜地,已知这三个长方形的长相同,第二块比第一块的宽多3米,第三块比第一块的宽少4米,第二块面积是840平方米,第三块面积是630平方米,求第一块地的面积是多少平方米?

3.有6个棱长分别是4厘米、5厘米、6厘米的相同的长方体,把它们的某些面染上红色,使得6个长方体中染有红色的面恰好分别是1个面、2个面、3个面、4个面、5个面和6个面.染色后把所有长方体分割成棱长为1厘米的小正方体,分割完毕后,恰有一面是红色的小正方体最多有多少个?

4.一列长110米的列车,以每小时30千米的速度向北驶去,14点10分火车追上一个向北走的工人,15秒后离开工人,14点16分迎面遇到一个向南走的学生,12秒后离开学生.问工人、学生何时相遇?

模拟试卷.16 姓名 得分

一、填空题:

1.10÷[9÷8÷(7÷6÷5÷4)÷3÷2]=______.

2.在铁路一侧,每隔50米有电线杆一根.一名旅客在行进的火车中观察,从经过第1根电线杆起,到经过第56根电线杆止,恰好过了2分30秒,这列火车每小时行驶______千米.

43.教室里女生占 ,后来又进来2名女生,使女生所占比例上升为9

9 ,现在教室里共有 人。 19

4.甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件共花3.15元;如果购买甲4件、乙10件、丙1件共花4.20元.现有人购得甲、乙、丙各1件,他共花______元.

12 415.已知:[13.5÷(11+ )-1÷7]×1 =1,那么□= 。 1-□6

6.A、B、C三人参加一次考试,A、B两人平均分比三人平均分多2.5分,B、C两人平均分比三人平均分少1.5分.已知B得了93分,那么C得了______分.

7.某旅游团租一辆车外出,租车费由乘车人平均负担,结果乘车人数与每人应付车费的元数恰好相等.后来又增加了10个人,这样每人应付车费比原来减少了6元.这辆车的租车费是______元.

8.大、小两个正方形(如图所示),已知大、小两个正方

形的边长之和为20厘米,大、小两个正方形的面积之差为40

平方厘米,小正方形面积是______平方厘米.

的最大值与最小值差是______.

10.蓄水池每分钟流入的水量都相同,如打开5个水龙头,2.5小时把水放尽,如打开8个水龙头,1.5小时把水放尽,现打开13个水龙头,_______个小时把水放尽.

二、解答题:

1.一串数有11个数,中间一个数最大.从中间的数往前数,一个数比一个数小2;从中间的数往后数,一个数比一个数小3,这11个数的总和是200,那么中间的数是多少?

2.有一批长度分别为1,2,3,4,5,6,7,8,9,10厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形.如果规定底边是10厘米长,你能围出多少个不同的三角形?

3.五位棋手参赛,任意两人都赛过一局.胜一局得2分,败一局得0分.和一局得1分,按得分多少排名次,已知第一名没下过和棋;第二名没输过,第四名没赢过.问这五名棋手的得分分别是多少?

4.已知甲从A到B,乙从B到A,甲、乙二人行走速度之比是6∶5.如图所示M是AB的中点,离M点26千米处有一点C,离M点4千米处有一

发,同时到达.求A与B之间的距离是多少千米?

模拟试卷.17 姓名 得分

一、填空题:

2.有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11359,那么其中最小的四位数是______.

人数增加了______%.

4.20个鸭梨和16个苹果分放两堆,共重11千克,如果从两堆中分别取4个鸭梨和4个苹果相交换,两堆重量就相同了.每个苹果比鸭梨重______千克.

5.图中长方形内画了一些直线,已知边上有三

块面积分别是15,34,47,那么图中阴影部分的面

积是_______.

6.某一年中有53个星期二,并且当年的元旦不是星期二,那么下一年的最后一天是星期______.

7.有四个不同的自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数.为使这四个数的和尽可能地小,这四个数分别是_______.

8.一个正方形被4条平行于一组对边和5条平行于另一组对边的直线分割成30个小长方形(大小不一定相同),已知这些小长方形的周长和是33,那么原来正方形的面积是_______.

9.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空先后各拿出90个仙桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,那么米老鼠拿出互换的泡泡糖共______个.

10.某种表,在7月29日零点比标准时间慢4分半,它一直走到8月5日上午7时,比标准时间快3分,那么这只表时间正确的时刻是_______月______日______时.

二、解答题:

1.计算:

3.A、B、C、D、E是从小到大排列的五个不同的整数,把其中每两个数求和,分别得出下面8个和数(10个和数中有相同的和数):17,22,25,28,31,33,36,39,求这五个整数的平均数.

4.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车.小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分遇到迎面开来的一辆电车;小张每隔5分遇到迎面开来的一辆电车;小王每隔6分遇到迎面开来的一辆电车.已知电车行驶全程是56分,那么小张与小王在途中相遇时他们已行走了多少分?

模拟试卷.18 姓名 得分

一、填空题:

2.将2004加上一个整数,使和能被23与31整除,加的整数要尽可能小,那么所加的整数是______.

看过的还多48页,这本书共有______页.

4.如图,每一横行、每一竖行和对角线上三个数之和均

相等,则x=______.

5.下面的字母算式中,每一个字母代表一个数字,

不同的字母代表不同的数字.如果CHINA代表的五位数能

被24整除,那么这个五位数是______.

6.有四个数,每次选取其中两个数,算出它们的和,再减去另外两个数的平均数,用这种方法计算了六次,分别得到以下六个数:43、51、57、63、69、78.那么原来四个数的平均数是_______.

7.有一枚棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步,跳到2号位置;第二次跳两步,跳到4号位置;第三次跳三步,又跳到1号位置;??,这样一直进行下去,______号位置永远跳不到.

这样的分数中最小的一个是______.

9.如图,等边三角形ABC的边长为100米,甲自A点,乙自B点同时出发,按顺时针方向沿着三角形的边行进.甲每分钟走60米,乙每分钟走90米,在过每个顶点时各人都因转弯而耽误10秒钟,那么乙在出发______秒之后追上甲.

10.把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面是红色的小长方体恰好是12块,那么至少要把这个大长方体分割成_______个小长方体.

二、解答题:

1.计算:

2.一件工作,甲独做要8小时完成,乙独做要12小时完成.如果先由甲工作1小时,然后由乙接替甲工作1小时,再由甲接替乙工作1小时,??,两人如此交替工作那么完成任务时共用了多少小时?

3.如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯

4.一个自然数除以6得到的商加上这个数除以7的余数,其和是11,求所有满足条件的自然数.

模拟试卷.19 姓名 得分

一、填空题:

171.[2-(5.55×1-2÷)]÷0.135= 。 310

2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.

3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的

联欢会的共有_______名同学.

4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.

5.如图,M、N分别为平行四边形相邻两边的中点,

1若平行四边形面积为1平方分米,那么图中面积为 平方4

分米的三角形有 个。

6.一个六位数□1997□能被33整除,这样的数是______.

7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.

8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,??,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.

9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.

10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.

二、解答题:

1.计算:

2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?

3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?

4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:

模拟试卷.20 姓名 得分

一、填空题:

1.13×99+135×999+1357×9999=______.

2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.

3.12345678987654321除本身之外的最大约数是______.

4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各

5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.

6.如图,E、F分别是平行四边形ABCD两边上的中

点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD

的面积是_______平方厘米.

7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.

9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.

10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.

二、解答题:

1.计算:1997÷19971997+1÷1999 1998

2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?

3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?

4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.

模拟试卷.21 姓名 得分

一、填空题:

1124311.[1.65÷( +0.8)-(0.5+ )×÷( - )= 。 433542

2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.

已知

人数不超过60人,则该班不及格的学生有______人.

3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.

4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.

5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.

6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.

7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.

8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,

四边形EFHG的面积是3平方厘米,阴影部分的面积和是

______平方厘米.

9.分子小于6,而分母小于60的不可约真分数有______个.

10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.

二、解答题:

1131.已知14+3×[(□+0.5)÷ +0.4× ]=100,求□=? 334

2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:

(1)分子和分母各加一个相同的一位数;

(2)分子和分母各减一个相同的一位数.

子.

3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,?,问最右边那个数除以6余几?

4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?

模拟试卷.22 姓名 得分

一、填空题:

141.1×17.6+36÷ +2.64×12.5= 。 45

2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.

3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.

4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.

5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·

6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.

7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面

积是2,则阴影部分的面积是______.

8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.

9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.

10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多

3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.

二、解答题:

1.计算

问参加演出的男、女生各多少人?

3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?

4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、?(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?

模拟试卷.23 姓名 得分

一、填空题:

2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.

3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.

4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.

6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.

7.55道数学题,分给甲、乙、丙三人计算。已知乙分到的题比甲多1倍,丙分到的题最少,却是个两位数,且个位不是0.甲分到______道题,乙分到______道题,丙分到______道题.

8.如图,已知CD=5,DE=7,EF=15,FG=6,直

线AB将图形分成两部分,左边部分面积是38,右

边部分面积是65,那么三角形ADG的面积是______.

数超过了试题总数的一半,则他们都答对的题有______道.

10.有一水果店一天之中共进了6筐水果,分别装着香蕉和桔子,重量分别为8、9、16、20、22、27千克.当天只卖出了一筐桔子.在剩下的五筐水果中香蕉的重量是桔子重量的2倍,那么当天共进了______筐香蕉.

二、解答题:

1.甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现

的现金是多少元?

2.如图,九个小长方形组成一个大长方形,按图中编号,则1号长方形的面积恰好是1平方厘米,2号恰好是2平方厘米,3号恰好是3平方厘米,4号恰好是4平方厘米,5号恰好是5平方厘米,6号的面积是多少平方厘米?

3.某人连续打工24天,挣了190元。星期一到星期五全天工作,日工资10元;星期六半天工作,发半资5元;星期日不工作,无工资.已知他打工是从3月下旬的某一天开始的,这个月的1日是星期日,那么他打工结束的那一天是4月几日?

4.有甲、乙、丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成.一项工作,需甲组13人、乙组15人合作3天完成.如果让丙组10人去做,需要多少天完成?

模拟试卷.24 姓名 得分

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com