haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

小学三年级奥数_巧数图形_知识点与习题

发布时间:2014-06-18 14:12:30  

例3下列图形中各有多少个三角形?

分析与解:(1)只需分别求出以AB,ED为底边的三角形中各有多少个三角形。

以AB为底边的三角形ABC中,有三角形

1+2+3=6(个)。

以ED为底边的三角形CDE中,有三角形

1+2+3=6(个)。

所以共有三角形6+6=12(个)。

这是以底边为标准来分类计算的方法。它的好处是可以借助“求底边线段数”而得出三角形的个数。我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。

由1个小块组成的三角形有3个;

由2个小块组成的三角形有5个;

由3个小块组成的三角形有1个;

由4个小块组成的三角形有2个;

由6个小块组成的三角形有1个。

所以,共有三角形

3+5+1+2+1=12(个)。

例4右图中有多少个三角形?

解:假设每一个最小三角

形的边长为1。按边的长度来分

类计算三角形的个数。

边长为1的三角形,从上到下一层一层地数,有

1+3+5+7=16(个);

边长为2的三角形(注意,有一个尖朝下的三角形)有1+2+3+1=7(个);

边长为3的三角形有1+2=3(个);

边长为4的三角形有1个。

所以,共有三角形

16+7+3+1=27(个)。

例6在下图中,包含“*”号的长方形和正方形共有多少个?

解:按包含的小块分类计数。

包含1小块的有1个;包含2小块的有4个;

包含3小块的有4个;包含4小块的有7个;

包含5小块的有2个;包含6小块的有6个;

包含8小块的有4个;包含9小块的有3个;

包含10小块的有2个;包含12小块的有4个; 包含15小块的有2个。

所以共有

1+4+4+7+2+6+4+3+2+4+2=39(个)。

练习11

1.下列图形中各有多少条线段?

2.下列图形中各有多少个三角形?

3.下列图形中,各有多少个小于180°的角?

4.下列图形中各有多少个三角形?

5.下列图形中各有多少个长方形?

6.下列图形中,包含“*”号的三角形或长方形各有多少?

7.下列图形中,不含“*”号的三角形或长方形各有几个?

答案与提示 练习11

1.(1)28;(2)210。2.(1)36;(2)8。

3.(1)10;(2)15。

4.(1)9个;(2)16个;(3)21个。

5.(1)60个;(2)66个。

6.(1)12个;(2)32个。

7.(1)21个;(2)62个。

提示:4~7题均采用按所含小块的个数分类(见下表),表中空缺的为0。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com