haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

初中培优竞赛 第3讲 整 式

发布时间:2014-07-11 09:24:49  

一、选择题

1.(4、5)(数学、初中数学竞赛、整式、绝对值、选择题)

已知a,b,c都是整数,

那么( )

A.m一定是奇数 B.m一定是偶数

C.仅当a,b,c同奇或同偶时,m是偶数 D.m的奇偶性不能确定

分析:|a|与a的奇偶性相同,所以m与

同为偶数 .

答案:B

技巧:找准奇偶性的本质,从本质入手,化简式子,从而方便判断.本题也可以按奇偶性分类讨论.

易错点:容易陷入讨论的误区,被绝对值迷惑导致出错.

2. (1、2)(数学、初中数学竞赛、整式、高次方程、代数式、选择题) 若,则的值是( )

A. 1 B. 0

C -1 D. 2

分析:由 得,所以

答案:C

技巧:将条件进行提公因式解出,就非常方便求解了.

3. (3、4)(数学、初中数学竞赛、整式、高次方程、代数式、选择题) 已知,m≠n,则的值为( )

A . 1 B . 0 C . -1 D . -2 分析:

=-2. 答案:D

技巧:本题关键在于将条件和所求代数式进行处理化简,最终求解. 易错点:在化简和变形的时候容易出错.

二、填空题

4. (1、2)(数学、初中数学竞赛、整式、高次方程、代数式、填空题) 设,则 m+2m +1997 = 3 2分析:m3 +2m2 +1997=

答案:1998. +1997 ,

因为

技巧:特殊观察,将条件和所求都变形,从而求解.

易错点:代数式变形时不要出错.

5. (3、4)(数学、初中数学竞赛、整式、高次方程、代数式、填空题) 当时,多项式的值是0,则多项式

分析:通过变形发现,.

答案:5 .

技巧:将条件进行变形就能集体代入求解.

易错点:代入变形时易出错.

6. (3、4)(数学、初中数学竞赛、整式、高次方程、代数式、填空题)

已知m,n互为相反数,a,b互为负倒数,x的绝对值等于3

,则

分析:由题意知m+n=0, ab=-1 , χ=±3 , 代入就可以求解.

详解: =

=26或-28

技巧:这类题直接把条件列出来代入到式中,结果基本就出来了.

易错点:容易出现遗漏的情况.

7.如果,那么

8.(2006年四川省竞赛题)设a1,a2,…,ak,为k个不相同的正整数,且,则k的最大值为

9.(2001年重庆市竞赛题)若,则

10.(1999年江苏省竞赛题)已知a,b,c,d是四个不同的有理数,且

,则

11.(2006年全国初中数学竞赛题)已知a,b,c为整数,且

.若.则a+b+c的最大值为

三、解答题

12.(3、4) (数学、初中数学竞赛、整式、高次方程、解答题) 已知且求m的值.

分析 :因为 所以.代入求解 . 详解: . 由 得,即 答:m的值为.

技巧:在于将题目中的条件进行灵活变形,然后代入求解.

易错点:代数式变形时不要出错.

13. (3、4) (数学、初中数学竞赛、整式、方程、解答题)

已知m,n为自然数,且满足,求m, n的值. 分析:依题意得,而m,n为自然数,故

,最后求解.

详解:,而m,n为自然数,故, 解得:m=83, n=84. 答:m、n的值分别为83、84.

技巧:利用平方差公式展开,很方便解决.

易错点:将167拆分的时候容易出错.

14. (3、4) (数学、初中数学竞赛、整式、方程、解答题)

已知

的值 . ,求(a-b-c) - (a+b-c)-(-a-b+c)

分析:因为同理可求代入求解. 详解:因为同理可求

技巧:将a、b、c进行化简,然后代入求解.

易错点:化简、代入求值时,都要谨防出错.

15.(第8届希望杯竞赛题)已知a是实数,且,求

17.(第13届迎春杯竞赛题)已知当时,

.

求当

时,代数式的值.

18.(天津市竞赛题)数码不同的两位数,将其数码顺序交换后得到一个新的两位 数,这两个两位数的平方差是完全平方数,求所有这样的两位数,

答案与解析

1.B |a|与a的奇偶性相同,所以m与

同为偶数 .

2.C 由 得,所以

3.D 4. 1998

5.5 因为.所以

6. 26或- 28 .原式或

8. 62 设,要使k最大,则需使前面的ai(i=l,2,…,k-l) 尽量小,于是取以a1=1为首的连续m个正整数相加,得,即 4010.经验证.故当

9.2 因为,所以而a显然不等于0,所以0

,即

所以

10.

11. 5013 由得.因为

,a为整数,所以a的最大值为1002.于是,a+b+c的最大值为5013

12.因为所以.由

得,即

13.依题意得,而m,n为自然数,故

,所以

14.因为

同理可求

3199619971998 15.由已知得(a+1)+1=0,所以a+1=-1,所以(a+1)+(a+1)+ (a+1)=1

16.999

66

+9982 +999=999-998999+998=19972

17.当时,

,所以.当时,

18.设所求两位数为,由已知得(k为整数),得

.而,得或

所以或.所以这样的两位数为65或56.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com