haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

五年级奥数第6讲 数的整除性(二)

发布时间:2013-09-29 18:05:22  

第6讲 数的整除性(二)

我们先看一个特殊的数——1001。因为1001=7×11×13,所以凡是1001的整数倍的数都能被7,11和13整除。

能被7,11和13整除的数的特征:

如果数A的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被7或11或13整除,那么数A能被7或11或13整除。否则,数A就不能被7或11或13整除。

例2 判断306371能否被7整除?能否被13整除?

解:因为371-306=65,65是13的倍数,不是7的倍数,所以306371能被13整除,不能被7整除。 例3 已知10□8971能被13整除,求□中的数。

解:10□8-971=1008-971+□0=37+□0。

上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8。

2位数进行改写。根据十进制数的意义,有

因为100010001各数位上数字之和是3,能够被3整除,所以这个12位数能被3整除。

根据能被7(或13)整除的数的特征,100010001与(100010-1=) 100009要么都能被7(或13)整除,要么都不能被7(或13)整除。

同理, 100009与( 100-9=)91要么都能被7(或13)整除,要么都不能被7(或13)整除。 因为91=7×13,所以100010001能被7和13整除,推知这个12位数能被7和13整除。

分析与解:根据能被7整除的数的特征,555555与999999都能被7

因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55□99能被7整除。根据能被7整除的数的特征,□99-55=□44也应能被7整除。由□44能被7整除,易知□内应是6。

下面再告诉大家两个判断整除性的小窍门。

判断一个数能否被27或37整除的方法:

对于任何一个自然数,从个位开始,每三位为一节将其分成若干节,然后将每一节上的数连加,如果所得的和能被27(或37)整除,那么这个数一定能被27(或37)整除;否则,这个数就不能被27(或

37)整除。

例6 判断下列各数能否被27或37整除:

(1)2673135;(2)8990615496。

解:(1) 2673135=2,673,135,2+673+135=810。

因为810能被27整除,不能被37整除,所以2673135能被27整除,不能被37整除。

(2)8990615496=8,990,615,496,8+990+615+496=2,109。

2,109大于三位数,可以再对2,109的各节求和,2+109=111。

因为111能被37整除,不能被27整除,所以2109能被37整除,不能被27整除,进一步推知8990615496能被37整除,不能被27整除。

由上例看出,若各节的数之和大于三位数,则可以再连续对和的各节求和。

判断一个数能否被个位是9的数整除的方法:

为了叙述方便,将个位是9的数记为 k9(= 10k+9),其中k为自然数。

对于任意一个自然数,去掉这个数的个位数后,再加上个位数的(k+1)倍。连续进行这一变换。如果最终所得的结果等于k9,那么这个数能被k9整除;否则,这个数就不能被k9整除。

例7 (1)判断18937能否被29整除;

(2)判断296416与37289能否被59整除。

解:(1)上述变换可以表示为:

由此可知,296416能被59整除,37289不能被59整除

。一般地,每进行一次变换,被判断的数的位数就将减少一位。当被判断的数变换到小于除数时,即可停止变换,得出不能整除的结论。

练习6

1.下列各数哪些能被7整除?哪些能被13整除?

88205, 167128, 250894, 396500,

675696, 796842, 805532, 75778885。

2.六位数175□62是13的倍数。□中的数字是几?

7.九位数8765□4321能被21整除,求中间□中的数。

8.在下列各数中,哪些能被27整除?哪些能被37整除?

1861026, 1884924, 2175683, 2560437,

11159126,131313555,266117778。

9.在下列各数中,哪些能被19整除?哪些能被79整除?

55119, 55537, 62899, 71258,

186637,872231,5381717。

练习6

1.能被7整除的有250894,675696,805532;

能被13整除的有88205,167128,805532,75778885。

2.1。

提示:175-62=113,只要□内填1,就有175-162=13。

4.能

5.能。提示:仿例5。

6.4。提示:仿例6。

7.0。

解:因为8765□4321能被21整除,所以能被7和3整除。 由能被7整除,推知下列各式也能被7整除:

8765□4-321=876504+□0-321=876183+□0,

876-(183+□0)=693+□0。

由(693+□0)能被7整除,可求出□=0或7。

再由能被3整除的数的特征,□内的数只能是0。

8.能被27整除的数有:1884924,2560437,131313555,266117778。 能被37整除的数有:1861026,2560437,11159126,131313555。

9.能被19整除的数有:55119,55537,186637;

能被79整除的数有:55537,71258,5381717。

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com