haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

初中数学竞赛辅导资料—用交集解题

发布时间:2013-10-02 09:02:22  

初中数学竞赛辅导资料—用交集解题

一、内容提要:

1, 某种对象的全体组成一个集合。组成集合的各个对象叫这个集合的元素。例如6的正约

数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个。

2, 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集

例如6的正约数集合A={1,2,3,6},10的正约数集合B={1,2,5,10},6与10的公约数集合C={1,2},集合C是集合A和集合B的交集。

3, 几个集合的交集可用图形形象地表示,

右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集。

例如不等式组??

2x?6?(1)解的集合就是

??x?2?(2)

不等式(1)的解集x>3和不等式(2)的解集x>2的交集,x>3.

4有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。

有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案。(如例2)

二、例题:

例1.一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值。 解:除以3余2的自然数集合A={2,5,8,11,14,17,20,23,26,……} 除以5余3的自然数集B={3,8,13,18,23,28,……}

除以7余2自然数集合C={2,9,16,23,30,……}

集合A、B、C的公共元素的最小值23就是所求的自然数。

例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数。 解: 二位的质数共21个,它们的个位数字只有1,3,7,9,即符合条件的质数它们的个

位数的集合是{1,3,7,9};

其中差等于6的有:1和7;3和9;13和7,三组;

平方数的个位数字相同的只有3和7;1和9二组。

同时符合三个条件的个位数字是3和7这一组

故所求质数是:23,17; 43,37; 53,47; 73,67共四组。

例3. 数学兴趣小组中订阅A种刊物的有28人,订阅B种刊物的有21人,其中6人两种都

订,只有一人两种都没有订,问只订A种、只订B种的各几人?数学兴趣小组共有几人?

解:如图左、右两椭圆分别表示订阅A种、B种刊物的人数集合,则两圆重叠部分就是它

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com