haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

五年级培优 竞赛 二合一 精讲系列之3 表面积与体积(例题 练习 课后作业一条龙)

发布时间:2013-10-05 10:02:30  

表面积与体积

专题简析:

小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。

在解答立体图形的表面积问题时,要注意以下几点:

(1)充分利用正方体六个面 的面积都相等,每个面都是正方形的特点。

(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。

(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。

例题1:

从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?

这是一道开放题,方法有多种:

①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。

图27--1

②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。

图27--2

1 弃侥幸之念,必取百炼成钢;积分秒之功,始得一鸣惊人

③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。

练习1: 图27--3

1、 从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,

剩下部分的表面积是多少?

2、 把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,

这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?

3、 在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的

变化?

例题2:

弃侥幸之念,必取百炼成钢;积分秒之功,始得一鸣惊人 2

把19个棱长为3厘米的正方体重叠起来,如图27-4所示,拼成一个立体图形,求这个立体图形的表面积。

图27—4

要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图27-5所示)。

从上往下看

而从另外三个方向上看到的面积与以上三个方向的面积是相等的。整个立体图形的表面积可采用(S上+S左+S前)×2来计算。

(3×3×9+3×3×8+3×3×10)×2

=(81+72+90)×2

=243×2

=486(平方厘米)

答:这个立体图形的表面积是486平方厘米。

练习2:

1、用棱长是1厘米的立方体拼成图27-6所示的立体图形。求这个立体图形的表面积。 弃侥幸之念,必取百炼成钢;积分秒之功,始得一鸣惊人 3 从左往右看图27—5从前往后看

图27—6

2、一堆积木(如图27-7所示),是由16块棱长是2厘米的小正方体堆成的。它们的表面积是多少平方厘米?

4、 一个正方体的表面积是384平方厘米,把这个正方体平均分割成64个相等的小正方体。每

个小正方体的表面积是多少平方厘米?

例题3:

把两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个 大长方体,这个大弃侥幸之念,必取百炼成钢;积分秒之功,始得一鸣惊人 4

长方体的表面积最少是多少平方厘米?

把两个相同的大长方体拼成一个大厂房体,需要把两个相同面拼合,所得大厂房体的表面积就减少了两个拼合面的面积。要使大长方体的表面积最小,就必须使两个拼合面的面积最大,即减少两个9×7的面。

(9×9+9×4+7×4)×2×2—9×7×2

=(63+36+28)×4—126

=508—126

=382(平方厘米)

答:这个大厂房体的表面积最少是382平方厘米。

练习3:

1、 把底面积为20平方厘米的两个相等的正方体拼成一个长方体,长方体的表面积是多少?

2、 将一个表面积为30平方厘米的正方体等分成两个长方体,再将这两个长方体拼成一个大长

方体。求大长方体的表面积是多少。

3、用6块(如图27-8所示)长方体木块拼成一个大长方体,有许多种做法,其中表面积最小的是多少平方厘米?

1厘米

2厘米

例题4: 3厘米

一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方里,求原长方体的表面积。

弃侥幸之念,必取百炼成钢;积分秒之功,始得一鸣惊人 5

我们知道:体积=长×宽×高;由长增加2厘米,体积增加40立方厘米,可知宽×高=40÷2=20(平方厘米);由宽增加3厘米,体积增加90立方厘米,可知长×高=90÷3=30(平方厘米);由高增加4厘米,体积增加96立方厘米,可知长×宽=96÷4=24(平方厘米)。而长方体的表面积=(长×宽+长×高+宽×高)×2=(20+30+24)×2=148(平方厘米)。即

40÷2=20(平方厘米)

90÷3=30(平方厘米)

96÷4=24(平方厘米)

(30+20+24)×2

=74×2

=148(平方厘米)

答:原 长方体的表面积是148平方厘米。

练习4:

1、 一个长方体,如果长减少2厘米,则体积减少48立方厘米;如果宽增加5厘米,则体积增

加65立方厘米;如果高增加4厘米,则体积增加96立方厘米。原来厂房体的表面积是

多少平方厘米?

2、 一个厂房体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正

方体,其表面积减少了120平方厘米。原来厂房体的体积是多少立方厘米?

3、有一个厂房体如下图所示,它的正面和上面的面积之和是209。如果它的长、宽、高都是质数,这个长方体的体积是多少?

弃侥幸之念,必取百炼成钢;积分秒之功,始得一鸣惊人 6

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com