haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

三年级奥数学生用书

发布时间:2013-10-09 08:03:45  

小学奥数基础教程(三年级) - 1 -

小学奥数基础教程(三年级)

第1讲 加减法的巧算

第2讲 横式数字谜(一)

第3讲 竖式数字谜(一)

第4讲 竖式数字谜(二)

第5讲 找规律(一)

第6讲 找规律(二)

第7讲 加减法应用题

第8讲 乘除法应用题

第9讲 平均数

第10讲 植树问题

第11讲 巧数图形

第12讲 巧求周长

第13讲 火柴棍游戏(一) 第14讲 火柴棍游戏(二) 第15讲 趣题巧解

第16讲 数阵图(一)

第17讲 数阵图(二)

第18讲 能被2,5整除的数的特征 第19讲 能被3整除的数的特征 第20讲 乘、除法的运算律和性质 第21讲 乘法中的巧算

第22讲 横式数字谜(二) 第23讲 竖式数字谜(三) 第24讲 和倍应用题

第25讲 差倍应用题

第26讲 和差应用题

第27讲 巧用矩形面积公式 第28讲 一笔画(一)

第29讲 一笔画(二)

第30讲 包含与排除

小学奥数基础教程(三年级)

- 2 -

小学奥数基础教程(三年级)

3

小学奥数基础教程(三年级) 4

小学奥数基础教程(三年级) 第2讲 横式数字谜(一) - 5 -

在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,

□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。 这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:

(1)一个加数+另一个加数=和;

(2)被减数-减数=差;

(3)被乘数×乘数=积;

(4)被除数÷除数=商。

由它们推演还可以得到以下运算规则:

由(1),得 和-一个加数=另一个加数;

其次,要熟悉数字运算和拆分。例如,8可用加法拆分为

8=0+8=1+7=2+6=3+5=4+4;

24可用乘法拆分为

24=1×24=2×12=3×8=4×6(两个数之积)

=1×2×12=2×2×6=?(三个数之积)

=1×2×2×6=2×2×2×3=?(四个数之积)

例1 下列算式中,□,○,△,☆,*各代表什么数?

(1)□+5=13-6; (2)28-○=15+7;

(3)3×△=54; (4)☆÷3=87;

(5)56÷*=7。

例2 下列算式中,□,○,△,☆各代表什么数?

(1)□+□+□=48;

(2)○+○+6=21-○;

(3)5×△-18÷6=12;

(4)6×3-45÷☆=13。

小学奥数基础教程(三年级) 例3(1)满足58<12×□<71的整数□等于几?

(2)180是由哪四个不同的且大于1的数字相乘得到的?试把这四个数按从小到大的次序填在下式的□里。 180=□×□×□×□。

(3)若数□,△满足

□×△=48和□÷△=3,

则□,△各等于多少?

例4 在等号左端的两个数中间添加上运算符号,使下列各式成立:

(1)4 4 4 4=24;

(2)5 5 5 5 5=6。

例5 在下式的两数中间添上四则运算符号,使等式成立:

8 2 3=3 3。

练习2

1.在下列各式中,□分别代表什么数?

□+16=35; 47-□=12; □-3=15;

4×□=36; □÷4=15; 84÷□=4。

2.在下列各式中,□,○,△,☆各代表什么数?

(□+350)÷3=200; (54-○)×4=0;

360-△×7=10; 4×9-☆÷5=1。

- 6 -

小学奥数基础教程(三年级) 3.在下列各式中,□,○,△各代表什么数?

150-□-□=□;

○×○=○+○;

△×9+2×△=22。

4.120是由哪四个不同的一位数字相乘得到的?试把这四个数字按从小到大的次序填在下式的□里:

120=□ ×□×□×□。

5.若数□,△同时满足

□×△=36和□-△=5,

则□,△各等于多少?

6.在两数中间添加运算符号,使下列等式成立:

(1)5 5 5 5 5=3;

(2)1 2 3 4=1。

7.在下列各式的□内填上合适的运算符号,使等式成立:

12□4□4=10□3。

8.在下列各式的□内填上合适的运算符号,使等式成立:

123□45□67□89=100;

123□45□67□8□9=100;

123□4□5□67□89=100;

123□4□5□6□7□8□9=100;

12□3□4□5□67□8□9=100;

1□23□4□56□7□8□9=100;

12□3□4□5□6□7□89=100。

- 7 -

小学奥数基础教程(三年级) 第4讲 竖式数字谜(二)

本讲只限于乘数、除数是一位数的乘、除法竖式数字谜问题。 - 8 -

掌握好乘、除法的基本运算规则(第2讲的公式(3)(4)及推演出的变形式子)是解乘、除法竖式谜的基础。根据题目结构形式,通过综合观察、分析,找出“突破口”是解题的关键。

例1 在左下乘法竖式的□中填入合适的数字,使竖式成立。

例2 在右边乘法竖式的□里填入合适的数字,使竖式成立。

分析与解:由于乘积的数字不全,特别是不知道乘积的个位数,我们只能从最高位入手分析。

乘积的最高两位数是2□,被乘数的最高位是3,由

可以确定乘数的大致范围,乘数只可能是6,7,8,9。到底是哪一个呢?我们只能逐一进行试算:

(1)若乘数为6,则积的个位填2,并向十位进4,此时,乘数6与被乘数的十位上的数字相乘之积的个位数只能是5(因4+5=9)。这样一来,被乘数的十位上就无数可填了。这说明乘数不能是6。

(2)若乘数为7,则积的个位填9,并向十位进4。与(1)分析相同,为使积的十位是9,被乘数的十位只能填5,从而积的百位填4。得到符合题意的填法如右式。

(3)若乘数为8,则积的个位填6,并向十位进5。为使积的十位是9,被乘数的十位只能填3或8。

当被乘数的十位填3时,得到符合题意的填法如右式。当被乘数的十位填8时,积的最高两位为3,不合题意。

(4)若乘数为9,则积的个位填3,并向十位进6。为使积的十位是9,被乘数的十位只能填7。而此时,积的最高两位是3,不合题意。

综上知,符合题意的填法有上面两种。

除法竖式数字谜问题的解法与乘法情形类似。

例3 在左下边除法竖式的□中填入适当的数,使竖式成立。

分析与解:由48÷8=6即8×6=48知,商的百位填6,且被除数的千位、百位分别填4,8。又显然,被除数的十位填1。由

1□=商的个位×8

知,两位数1□能被8除尽,只有16÷8=2,推知被除数的个位填6,商的个位填2。填法如右上式。 例3是从最高位数入手分析而得出解的。

小学奥数基础教程(三年级) 例4 在右边除法竖式的□中填入合适的数字。使竖式成立。

- 9 -

练习4

1.在下列各竖式的□里填上合适的数:

2.在右式中,“我”、“爱”、“数”、“学”分别代表什么数时,乘法竖式成立?

3.“我”、“们”、“爱”、“祖”、“国”各代表一个不同的数字,它

们各等于多少时,右边的乘法竖式成立?

4.在下列各除法竖式的□里填上合适的数,使竖式成立:

5.在下式的□里填上合适的数。

第5讲 找规律(一)

这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。

小学奥数基础教程(三年级) 按一定次序排列的一列数就叫数列。例如,

(1) 1,2,3,4,5,6,?

(2) 1,2,4,8,16,32;

(3) 1,0,0,1,0,0,1,?

(4) 1,1,2,3,5,8,13。 - 10 -

一个数列中从左至右的第n个数,称为这个数列的第n项。如,数列(1)的第3项是3,数列(2)的第3项是4。一般地,我们将数列的第n项记作an。

数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。

许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。

数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项an=n。 数列(2)的规律是:后项=前项×2,或第n项

数列(3)的规律是:“1,0,0”周而复始地出现。

数列(4)的规律是:从第三项起,每项等于它前面两项的和,即

a3=1+1=2,a4=1+2=3,a5=2+3=5,

a6=3+5=8,a7=5+8=13。

常见的较简单的数列规律有这样几类:

第一类是数列各项只与它的项数有关,或只与它的前一项有关。例如数列(1)(2)。

第二类是前后几项为一组,以组为单元找关系才可找到规律。例如数列(3)(4)。

第三类是数列本身要与其他数列对比才能发现其规律。这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。

例1 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)4,7,10,13,( ),?

(2)84,72,60,( ),( );

(3)2,6,18,( ),( ),?

(4)625,125,25,( ),( );

(5)1,4,9,16,( ),?

(6)2,6,12,20,( ),( ),?

例2 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)1,2,2,3,3,4,( ),( );

(2)( ),( ),10,5,12,6,14,7;

(3) 3,7,10,17,27,( );

(4) 1,2,2,4,8,32,( )。

小学奥数基础教程(三年级) 例3 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)18,20,24,30,( );

(2)11,12,14,18,26,( );

(3)2,5,11,23,47,( ),( )。

例4 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)12,15,17,30, 22,45,( ),( );

(2) 2,8,5,6,8,4,( ),( )。

练习5

按其规律在下列各数列的( )内填数。

1.56,49,42,35,( )。

2.11, 15, 19, 23,( ),?

3.3,6,12,24,( )。

4.2,3,5,9,17,( ),?

5.1,3,4,7,11,( )。

6.1,3,7,13,21,( )。

7.3,5,3,10,3,15,( ),( )。

8.8,3,9,4,10,5,( ),( )。

9.2,5,10,17,26,( )。

10.15,21,18,19,21,17,( ),( )。

11.数列1,3,5,7,11,13,15,17。

(1)如果其中缺少一个数,那么这个数是几?应补在何处?

(2)如果其中多了一个数,那么这个数是几?为什么?

第6讲 找规律(二)

这一讲主要介绍如何发现和寻找图形、数表的变化规律。

例1 观察下列图形的变化规律,并按照这个规律将第四个图形补充完整。

- 11 -

小学奥数基础教程(三年级) 例2 在下列各组图形中寻找规律,并按此规律在“?”处填上合适的数: - 12 -

例3 寻找规律填数:

例4 寻找规律在空格内填数:

例5在下列表格中寻找规律,并求出“?”:

小学奥数基础教程(三年级) 例6 寻找规律填数:

(1)

(2) - 13 -

解:(1)观察其规律知

(2)观察其规律知:

观察比较图形、图表、数列的变化,并能从图形、数量间的关系中发现规律,这种能力对于同学们今后的学习将大有益处。

练习6

寻找规律填数:

小学奥数基础教程(三年级) - 14 -

6.下图中第50个图形是△还是○?

○△○○○△○○○△○?

第7讲 加减法应用题

用数学方法解决人们生活和工作中的实际问题就产生了通常所说的“应用题”。

应用题由已知的“条件”和未知的“问题”两部分构成,而且给出的已知条件应能保证求出未知的问题。 这一讲主要介绍利用加、减法解答的简单应用题。

例1 小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。小玲家养了多少只鹅?

例2 一个筐里装着52个苹果,另一个筐里装着一些梨。如果从梨筐里取走18个梨,那么梨就比苹果少12个。原来梨筐里有多少个梨?

小学奥数基础教程(三年级) 糖比水果糖多28块。又知巧克力糖的块数恰好是小白兔软糖块数的2倍。三年级一班共买了多少块糖果?

- 15 - 例3 某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。已知水果糖比小白兔软糖多15块,巧克力

例4 一口枯井深230厘米,一只蜗牛要从井底爬到井口处。它每天白天向上爬110厘米,而夜晚却要向下滑70厘米。这只蜗牛哪一个白天才能爬出井口?

练习7

1.甲、乙、丙三人原各有桃子若干个。甲给乙2个,乙给丙3个,丙又给甲5个后,三人都有桃子9个。甲、乙、丙三人原来各有桃子多少个?

2.三座桥,第一座长287米,第二座比第一座长85米,第三座比第一座与第二座的总长短142米。第三座桥长多少米?

3.(1)幼儿园小班有巧克力糖40块,还有一些奶糖。分给小朋友奶糖24块后,奶糖就比巧克力糖少了10块。原有奶糖多少块?

(2)幼儿园中班有巧克力糖48块,还有一些奶糖。分给小朋友奶糖26块后,奶糖就只比巧克力糖多18块。原有奶糖多少块?

4.一桶柴油连桶称重120千克,用去一半柴油后,连桶称还重65千克。这桶里有多少千克柴油?空桶重多少?

小学奥数基础教程(三年级) 到达井口处。这个枯水井有多深?

若第5天白天爬到井口处,这口井至少有多少厘米深?(厘米以下的长度不计)

- 16 - 5.一只蜗牛从一个枯水井底面向井口处爬,白天向上爬110厘米,而夜晚向下滑40厘米,第5天白天结束时,蜗牛

6.在一条直线上,A点在B点的左边20毫米处,C点在D点左边50毫米处,D点在B点右边40毫米处。写出这四点从左到右的次序。

7.(1)五个不同的数的和为172,这些数中最小的数为32,最大的数可以是多少?

(2)六个不同的数的和为356,这些数中,最大的是68,最小的数可以是多少?

第8讲 乘除法应用题

本讲向同学们介绍如何利用乘、除法解答简单应用题。用乘、除法解应用题,首先要明确下面几个关系,然后根据应用题中的已知条件,利用这些数量关系求解。

被乘数×乘数=乘积,相同数×个数=总数,

小数×倍数=大数,

被除数÷除数=商,被除数÷商=除数,

被除数÷除数=(不完全)商??余数。

例1学校开运动会,三年级有86人报名参加单项比赛,其他年级参加单项比赛的人数是三年级的4倍少5人。全校参加单项比赛的人数有多少人?

例2有5只猴子,其中2只各摘了7个桃子,另外3只各摘了12个桃子。把所有摘下的桃子平均分给这5只猴子,每只猴子能分到多少个桃子?

例3小白兔上山采摘了许多蘑菇。它把这些蘑菇先平均分成4堆,3堆送给它的小朋友,自己留一堆。后来它又把留下的这一堆平均分成3堆,两堆送给别的小白兔,一堆自己吃。自己吃的这一堆有5个。它共采摘了多少个蘑菇?

小学奥数基础教程(三年级) 小雨步行回来用多少时间?

- 17 - 例4小雨到奶奶家。如果来回都乘车,那么路上要用20分钟。如果去时乘车,回来时步行,那么一共要用50分钟。

例5师徒二人加工同样的机器零件。师傅加工的个数是徒弟的4倍,其个数比徒弟多54个。师徒二人这天各加工了多少个零件?

例6工厂装配四轮推车,1个车身要配4个车轮。现在有40个车身,70个车轮。问:装配出多少辆四轮推车后,剩下的车身和车轮的数量相等?

练习8

1.某项工作3人做需要3个星期又3天,中间无休息日,那么,1人单独做这项工作需要多少天?

2.贺林家养鸡的只数是鹅的只数的6倍,鸭比鹅多8只,鸭有15只。贺林家养了多少只鸡?

3.小敏买了一本书和一包糖。买一本书用了3元6角,买糖用的钱数是买书所用钱数的5倍。她带去的50元钱还剩多少?

4.小峰去老师家看望老师。如果往返都骑自行车,那么在路上要用1时20分。如果去时骑自行车,回来时步行,那么一共要用2时30分。小峰步行回来用多少时间?

5.4元钱能买西瓜8千克,10元钱能买多少西瓜?

6.小兰有24本书,小玲有18本书。小兰要给小玲几本书,两人的书才一样多?

7.小红与小光买拼音本。小红买了12本,小光买了8本。小红比小光多用2元4角钱。每本多少钱?

8.甲、乙两辆汽车分别从同一车站出发,沿相反方向开去,3时共行360千米。甲的速度是乙的速度的2倍。甲、乙的速度各是多少?

小学奥数基础教程(三年级) 粮库原来存粮各多少?

第9讲 平均数 - 18 - 9.甲、乙两个粮库共存粮150吨。甲库运出40吨,乙库运入10吨,这时甲库存粮是乙库存粮的2倍。甲、乙

把一个(总)数平均分成几个相等的数,相等的数的数值就叫做这个(总)数的平均数。例如,24平均分成四个数:6,6,6,6,数6就叫做24分成四份的平均数。又如,24平均分成六个数:4,4,4,4,4,4,数4就叫做24分成六份的平均数。

由此可见,平均数是相对于“总数”和分成的“份数”而言的。知道了被均分的“总数”和均分的“份数”,就可以求出平均数:

总数÷份数=平均数。

“平均数”这个数学概念在我们的日常生活和工作中经常用到。例如,某次考试全班同学的“平均成绩”,几件货物的“平均重量”,某辆汽车行驶某段路程的“平均速度”等等,都是我们经常碰到的求平均数的问题。根据求平均数的一般公式可以得到它们的计算方法:

全班同学的总成绩÷全班同学人数=平均成绩,

几件货物的总重量÷货物件数=平均重量,

一辆汽车行驶的路程÷所用的时间=平均速度。

我们在上一讲的例2中,已经接触到求平均数的应用题,下面再举一些例子来说明有关平均数应用问题的解法。 例1一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?

例2把40千克苹果和80千克梨装在6个筐内(可以混装),使每个筐装的重量一样。每筐应装多少千克?

例3小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重?

例4一个学生为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题。星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道。那么,星期日要做几道题才能达到自己规定的要求?

例5三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少?

小学奥数基础教程(三年级) 例6小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?

练习9 - 19 -

1.一班有40个学生,二班有42个学生,三班有45个学生。开学后又转学来了11个学生。怎样分才能使每班学生人数相等?

2.小岗计划4天做15道数学题,结果多做了9道。平均每天做了多少道?

3.一小组同学体检量身高时发现其中2人的身高是123厘米,另外4人的身高均为132厘米。这个小组同学的平均身高是多少?

4.小梅做跳绳练习,第一次跳了67下,第二次跳了76下。她要想三次平均成绩达到80下,第三次至少要跳多少下?

5.一农机站有960千克的柴油。用了6天,还剩240千克。照此用法,剩下的柴油还可用几天?

6.小浩为培养自己的阅读能力,自己规定这一个月(30天)要读完共288页的彩图世界童话名著《伊索寓言》。头9天平均每天读了8页,第二个9天平均每天读了10页,第三个9天平均每天读了11页。最后三天平均每天需要读几页才能达到自己规定的要求?

7.五个同学期末考试的数学成绩平均94分,而其中有三个同学的平均成绩为92分,另两个同学的平均成绩是多少?

8.小亮学游泳,第一次游了25米,第二次游的距离比两次游的平均距离多8米。小亮第二次游了多少米?

9.篮球队中四名队员的平均身高是182厘米,另一名队员的身高比这五队员的平均身高矮8厘米,这名队员的身高是多少?

小学奥数基础教程(三年级) 第10讲 植树问题 - 20 -

绿化工程是造福子孙后代的大事。确定在一定条件下栽树、种花的棵数是最简单、最基本的“植树问题”。还有许多应用题可以化为“植树问题”来解,或借助解“植树问题”的思考方法来解。

先介绍四类最简单、最基本的植树问题。

为使其更直观,我们用图示法来说明。树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

显然,只有下面四种情形:

(1)非封闭线的两端都有“点”时,

“点数”=“段数”+1。

(2)非封闭线只有一端有“点”时,

“点数”=“段数”。

(3)非封闭线的两端都没有“点”时,

“点数”=“段数”-1。

(4)封闭线上,“点数”=“段数”。

最简单、最基本的植树问题只有这四类情形。

例如,一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?这是第(1)种情形,所以要栽树420÷3+1=141(棵)。

又如,肖林家门口到公路边有一条小路,长40米。肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?由于门的一端不能栽树,公路边要栽树,所以,属于第(2)种情形,要栽树40÷2=20(棵)。

再如,两座楼房之间相距30米,每隔2米栽一棵树,一直行能栽多少棵树?因紧挨楼房的墙根不能栽树,所以,属于第(3)种情形,能栽树30÷2-1=14(棵)。

再例如,一个圆形水池的围台圈长60米。如果在此台圈上每隔3米放一盆花,那么一共能放多少盆花?这属于第(4)种情形,共能放花60÷3=20(盆)。

许多应用题都可以借助或归结为上述植树问题求解。

例1在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。这段路长多少米?

例2小明要到高层建筑的11层,他走到5层用了100秒,照此速度计算,他还需走多少秒?

例3一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。这列车队共排列了多长?如果车队每秒行驶2米,那么这列车队要通过535米长的检阅场地,需要多少时间?

小学奥数基础教程(三年级) 例4下图是五个大小相同的铁环连在一起的图形。它的长度是多少?十个这样的铁环连在一起有多长?

- 21 -

例5父子俩一起攀登一个有300个台阶的山坡,父亲每步上3个台阶,儿子每步上2个台阶。从起点处开始,父子俩走完这段路共踏了多少个台阶?(重复踏的台阶只算一个)。

练习10

1.学校有一条长60米的走道,计划在道路一旁栽树。每隔3米栽一棵。

(1)如果两端都各栽一棵树,那么共需多少棵树苗?

(2)如果两端都不栽树,那么共需多少棵树苗?

(3)如果只有一端栽树,那么共需多少棵树苗?

2.一个长100米,宽20米的长方形游泳池,在离池边3米的外围圈(仍为长方形)上每隔2米种一棵树。共种了多少棵树?

3.一根90厘米长的钢条,要锯成9厘米长的小段,一共要锯几次?

4.测量人员测量一条路的长度。先立了一个标杆,然后每隔40米立一根标杆。当立杆10根时,第1根与第10根相距多少米?

5.学校举行运动会。参加入场式的仪仗队共180人,每6人一行,前后两行间隔120厘米。这个仪仗队共排了多长?

6.在一条长1200米的河堤边等距离植树(两端都要植树)。已挖好每隔6米植一棵树的坑,后要改成每隔4米植一棵树。还要挖多少个坑?需要填上多少个坑?

小学奥数基础教程(三年级) 10米,那么这个车队共有多少辆车?

第11讲 巧数图形 - 22 - 7.一个车队以5米/秒的速度缓缓地通过一座210米长的大桥,共用100秒。已知每辆车长5米,两车之间相隔

数出某种图形的个数是一类有趣的图形问题。由于图形千变万化,错综复杂,所以要想准确地数出其中包含的某种图形的个数,还真需要动点脑筋。要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。

例1数出下图中共有多少条线段。

由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。

例2 下列各图形中,三角形的个数各是多少?

例3下列图形中各有多少个三角形?

小学奥数基础教程(三年级) 例4右图中有多少个三角形?

- 23 -

例5数出下页左上图中锐角的个数。

分析与解:在图中加一条虚线,如下页右上图。容

例6在下图中,包含“*”号的长方形和正方形共有多少个?

练习11

1.下列图形中各有多少条线段?

2.下列图形中各有多少个三角形?

小学奥数基础教程(三年级) 3.下列图形中,各有多少个小于180°的角? - 24 -

4.下列图形中各有多少个三角形?

5.下列图形中各有多少个长方形?

6.下列图形中,包含“*”号的三角形或长方形各有多少?

7.下列图形中,不含“*”号的三角形或长方形各有几个?

小学奥数基础教程(三年级)

第12讲 巧求周长

我们知道: - 25 -

这两个计算公式看起来十分简单,但用途却十分广泛。用它们可以解决许多直角多边形(所有的角都是直角的多边形)的周长问题。这是因为直角多边形总可以分割成若干个正方形或长方形。

例如,下面的图形都可以分割成若干个正方形或长方形,当然分割的方法不是唯一的。

由此,可以演变出许多只涉及正方形、长方形周长计算公式的题目。

例1一个苗圃园(如左下图),周边和中间有一些路供人行走(图中线段表示“路”),几个小朋友在里面观赏时发现:从A处出发,在速度一样的情况下,只要是按“向右”、“向上”方向走,几个人分头走不同的路线,总会同时达到B处。你知道其中的道理吗?

例2 计算下列图形的周长(单位:厘米)。

例3 求下面两个图形的周长(单位:厘米)。

小学奥数基础教程(三年级) - 26 -

例4在一张纸上画出由四个边长为3厘米的正方形拼凑或组合成的图形(重叠的线段只算画一次)。显然,这个图形有多种多样的画法,下列各图是其中的一部分画法。在所有的这些画法中,

(1)哪种画法画出的线段总长最长?有多长?

(2)哪种画法画出的线段总长最短?有多长?

例5下图是一个方形螺线。已知两相邻平行线之间的距离均为1厘米,求螺线的总长度。

练习12

1.试求左下图的周长(单位:厘米)。

2.上页右下图是由边长为1厘米的11个正方形堆成的“土”字图形。试求出其周长。

3.右图是某小学教学楼的平面示意图,设计者在图上只标明了三条线段的长度(单位:米)。请你算出它的周长。

小学奥数基础教程(三年级)

4.下图是由七个长5厘米、宽3厘米的相同长方形经过竖放、横放而成的图形。求这个图形的周长。

- 27 -

5.下面两图中的小方格的大小相同。图(1)的周长为48厘米,图(2)的周长等于多少?

6.如右图所示,一个正方形被分成了三个相同的长方形。如果其中一个长方形的周长是16米,那么这个正方形的周长是多少米?

第13讲 火柴棍游戏(一)

火柴除了可作火种外,人们常用它来摆图形、算式,做出许多有趣的游戏。它不受场地和时间的限制,只要有几根火柴(或几根长短一样的细小木棍)就可以进行。火柴游戏寓知识、技巧于游戏之中,启迪你的智慧,开阔你的思路,丰富你的课余生活。

火柴游戏大体分为两种:一种是摆图形和变换图形;一种是变换算式。

这一讲我们先介绍变换图形的游戏。

1.摆图形游戏

游戏1用8根火柴棍可以摆成一个正方形。现添两根,即用10根火柴能摆出与这个正方形同样大小的图形吗? 分析与解:8根火柴摆一个正方形,每边必是两根火柴。它可以分成四个小正方形(如右图)。因此,只要用10根火柴摆出有四个同样大小的小正方形的图形即可。下面的四个图形都符合题意。

小学奥数基础教程(三年级) 游戏2用8根火柴棍摆出八个大小一样的三角形和两个一样大小的正方形。

- 28 -

分析与解:4根火柴可摆出一个正方形,另4根火柴又可摆出一个同样大小的正方形。把这两个正方形如右图所示交叉放在一起,就形成八个相同的三角形。

2.移动火柴,变换图形游戏

游戏3右图是用10根火柴棍摆成的一座房子。请移动2根火柴,使房子改变方向。

解:如左下图所示,除虚线表示的2根火柴外,其余火柴是左、右对称的,所以改变房子的方向与这些火柴无关,应移动虚线表示的2根火柴(见右下图)。

游戏4在左下图中移动4根火柴棍,使图形成为只有三个正方形的图形。

解:因为只能移动4根火柴,所以图中较长的边(3根或4根火柴的边)都不能动。把图中最里面的4根火柴移补到右上图的相关位置上即可。

游戏5在左下图中移动4根火柴棍,使它变成3个三角形,并且这3个三角形的面积之和与原来的六边形面积相同。

解:原图中有6个三角形,变化后剩下3个三角形,这3个三角形与原来的6个三角形的面积相同,必然有一个三角形的面积要增大。如右上图所示,移动虚线表示的4根火柴。图中下面的大三角形面积等于小三角形面积的4倍。

3.去掉火柴,变换图形游戏

游戏6在左下图中去掉尽量少的火柴棍,使得图中不存在任何正方形。

小学奥数基础教程(三年级) 解:拿掉的火柴应能尽量多的“破坏”正方形。如右上图,拿掉虚线处的4根火柴即可。拿法不唯一。 游戏7 在左下图中,去掉4根火柴棍,使它变成两个完全相同的图形组合。

- 29 -

分析与解:左上图的面积等于七个边长为1根火柴棍的小正方形的面积之和。要达到规定要求,必须去掉一个小正方形。剩下的部分划分成两个面积等于三个小正方形面积的图形。去掉右上图中虚线所示的火柴棍即可。 练习13

1.用9根火柴棍摆出一个图形,使它含有五个等边三角形。

2.用9根火柴棍摆出一个图形,使它含有三个正方形和七个长方形(不含正方形)。

3.在左下图中移动3根火柴棍,使“井”字形变成“品”字形图形。

4.右上图是用24根火柴棍摆出的两个正方形。

(1)请你移动4根,把它变成三个正方形;

(2)再移动8根,把(1)中所得图形变成九个完全相同的正方形;

(3)在(2)中所得图形上拿走8根火柴,使它变成五个完全相同的正方形。

小学奥数基础教程(三年级)

5.用13根火柴棍摆成含有6个、7个和8个等边三角形的图形。各给出一种摆法。

6.右图中共有13个三角形,从中拿掉尽量少的火柴棍,使得图中没有三角形。

- 30 -

第14讲 火柴棍游戏(二)

火柴棍游戏的另一种形式是摆算式。

用火柴棍可以摆出下列数字和符号:

这些数字和符号,在去掉或添加或移动火柴棍后有些可以相互变化。例如:

添加1根火柴,可以得到

去掉1根火柴,可以得到

移动1根火柴,可以得到

其中“→”表示“可变为”。

做火柴棍算式游戏就是利用这些变化,改变算式,使之符合题目要求。

下面举的几个例子,只要仔细观察答式,就可以明白是如何按规定变化的,因此就不再进行过细说明了。

游戏1下面火柴棍摆的算式都是错的。请在各式中去掉或添加1根火柴棍,使各式成立:

小学奥数基础教程(三年级) - 31 -

游戏2在下列各式中只移动1根火柴棍,使错误的式子变成正确的算式:

游戏3下面的两个算式都是错误的,各移动2根火柴,使它们都变成正确的算式:

游戏4 每式移动3根火柴棍,使各式都变为正确的算式:

游戏5 下面是一个不正确的不等式,请移动其中1根火柴,使不等式成立。要求找到尽可能多的不同的移动方法。

练习14

1.在下面各式中去掉或添加1根火柴棍,使各式变成正确的算式:

小学奥数基础教程(三年级)

2.在下面各式中,只移动1根火柴棍,使各式变为正确的算式:

- 32 -

3.移动2根火柴棍,使下面的不等式反向:

4.在下列各式中移动2根火柴,使它们成立:

5.移动3根火柴棍,使下式成立:

6.在下面的等式中,移动3根火柴棍,使其成为一个新的等式:

7.下面是一个不正确的不等式,请移动其中1根火柴,使不等式成立。请找出尽量多的不同移法。

小学奥数基础教程(三年级)

第15讲 趣题巧解

为了考考同学们的智力和灵气,先提几个问题:

一张长方形的纸,用剪刀剪掉一个角,还剩几个角?

把一根毛线对折两次后剪一刀,毛线被剪成了几段?

一树枝上有10只鸟,用汽枪打中了一只,树枝上还剩几只鸟? - 33 -

这类智力问题很有趣,但回答时要小心,稍有不慎,就可能落入“圈套”。要想正确地解答这类题目,一是要全面考虑各种情况,二是要充分运用学过的数学知识,再就是还需要些思考问题的灵气和非常规的思考方法。 例1一张长方形纸片有四个角,用剪刀沿直线剪掉一个角后,还剩几个角?

例2 37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工)。他们要全部渡过河去,至少要使用这只小船渡河多少次?

例3(1)右图是10枚硬币,移动其中1枚硬币,使每一行上都有6枚硬币。

(2)用12根火柴拼出6个边长为1根火柴的正方形。

小学奥数基础教程(三年级)

- 34 -

例4一群动物在一起玩叠罗汉游戏。每只动物的重量都是整千克数,其中,最轻的重1千克,最重的重60千克。叠罗汉规定每只动物上面的总重量不能超过自己的重量。在重1~60千克的动物都有的情况下,它们最多能叠几层?(叠一个动物算一层)

例5(1)小丽家里的闹钟每天早晨6点半准时响铃,提醒小丽起床,准备上学。有一次,小丽第二天要6点钟起床到学校去大扫除,她在头天晚上9点时把闹钟钟面时间调到8点半还是调到9点半,才能使闹钟第二天早晨6点钟响铃?

(2)小明和小强约定10点钟在学校门口碰面,小明的表慢5分钟,而他却以为慢10分钟;小强的表慢10分钟,而他却以为快5分钟。他俩会面时,谁迟到了?先到者等了多少时间才见到迟到者?

例6(1)三个小朋友三分钟削三支铅笔,照此效率,六个小朋友几分钟削六支铅笔?

(2)三只猫三天吃三只老鼠,照此效率,六只猫六天吃几只老鼠?

练习15

1.画三条线段,能构成几个角?

2.用6根长短、粗细一样的火柴棍拼出四个等边三角形(即三边相等的三角形),如何拼?

3.一只挂钟,1点整敲1下,2点整敲2下??12点整敲12下,每半点整敲1下。一昼夜(24时)一共要敲多少下?

小学奥数基础教程(三年级)

- 35 -

4.打靶时,小林和小峰各打了三枪,环数为1,2,4,5,7,9环。已知小林的总环数比小峰的总环数多6环。哪几环是小峰打的?

5.五个小朋友围坐在一个大圆桌边,按顺时针方向依次编为1,2,3,4,5号。老师给1,2,3,4,5号小朋友分别发1,2,3,4,5个苹果。从5号小朋友开始,依次按顺时针方向看,若邻坐的苹果比自己少,则送给对方一个;若邻坐的苹果不比自己少就不送。照此做下去,到第三圈为止,他们每人手中各有多少个苹果?

6.球场休息时,保管员慌忙中把甲、乙、丙三个运动员先前交给他的水瓶都递送错了,结果甲喝的是丙的。乙、丙各喝的是谁的?

7.有一个台称,只能称40千克以上的重量,甲、乙、丙三个小朋友的体重都在20~39千克之间,他们都想知道自己的体重。用这台称怎样才能知道他们各自的体重?

8.(1)三个小朋友三分钟削三支铅笔,九个小朋友六分钟削几支铅笔?

(2)三只猫三天吃三只老鼠,六只猫几天吃18只老鼠?

第16讲 数阵图(一)

在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:

小学奥数基础教程(三年级)

- 36 -

左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。要排出这样巧妙的数阵图,可不是一件容易的事情。我们还是先从几个简单的例子开始。

例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

例2 把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

例3 把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。

例4 将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。

例5 将 10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。

例1~5都具有中心数是重叠数,并且每边的数字之和都相等的性质,这样的数阵图称为辐射型。例4的图中有三条边,每边有三个数,称为辐射型3—3图;例5有五条边每边有三个数,称为辐射型5—3图。

一般地,有m条边,每边有n个数的形如下图的图形称为辐射型m-n图。

小学奥数基础教程(三年级)

- 37 -

辐射型数阵图只有一个重叠数,重叠次数是“直线条数”-1,即m-1。对于辐射型数阵图,有

已知各数之和+重叠数×重叠次数

=直线上各数之和×直线条数。

由此得到:

(1)若已知每条直线上各数之和,则重叠数等于

(直线上各数之和×直线条数-已知各数之和)÷重叠次数。

如例1、例4。

(2)若已知重叠数,则直线上各数之和等于(已知各数之和+重叠数×重叠次数)÷直线条数。如例2、例5。

(3)若重叠数与每条直线上的各数之和都不知道,则要从重叠数的可能取值分析讨论,如例3。

练习16

1.将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。

如果每条直线上的三个数之和等于10,那么又该如何填?

2.将1~9这九个数分别填入右上图中的○里(其中9已填好),使每条直线上的三个数之和都相等。

如果中心数是5,那么又该如何填?

3.将1~9这九个数分别填入右图的小方格里,使横行和竖列上五个数之和相等。(至少找出两种本质上不同的填法

)

4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。

5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大。

小学奥数基础教程(三年级) - 38 -

6.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。

第17讲 数阵图(二)

上一讲我们讲了仅有一个“重叠数”的辐射型数阵图的填数问题,这一讲我们讲有多个“重叠数”的封闭型数

阵图。

例1 将1~8这八个数分别填入右图的○中,使两个大圆上的五个数之和都等于21。

例2 将1~6这六个自然数分别填入右图的六个○内,使得三角形每条边上的三个数之和都等于11。

例3 将1~6这六个自然数分别填入右图的六个○中,使得三角形每条边上的三个数之和都相等。

例4将2~9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。

例5把1~7分别填入左下图中的七个空块里,使每个圆圈里的四个数之和都等于13。

练习17

1.把1~8填入下页左上图的八个○里,使每个圆圈上的五个数之和都等于20。

小学奥数基础教程(三年级)

- 39 -

2.把1~6这六个数填入右上图的○里,使每个圆圈上的四个数之和都相等。

3.将1~8填入左下图的八个○中,使得每条边上的三个数之和都等于15。

4.将1~8填入右上图的八个○中,使得每条直线上的四个数之和与每个圆周上的四个数之和都相等。

5.将1~7填入右图的七个○,使得每条直线上的各数之和都相等。

6.把1,3,5,7,9,11,13分别填入左图中的七个空块中,使得每个圆内的四个数之和都等于34。

第18讲 能被2,5整除的数的特征

同学们都知道,自然数和0统称为(非负)整数。同学们还知道,两个整数相加,和仍是整数;两个整数相乘,乘积也是整数;两个整数相减,当被减数不小于减数时,差还是整数。两个整数相除时,情况就不那么简单了。如果被除数除以除数,商是整数,我们就说这个被除数能被这个除数整除;否则,就是不能整除。例如, 84能被2,3,4整除,因为84÷2=42,84÷3=28,84÷4=21,42,28,21都是整数。

而84不能被5整除,因为84÷5=16??4,有余数4。也不能被13整除,因为84÷13=6??6,有余数6。 因为0除以任何自然数,商都是0,所以0能被任何自然数整除。

这一讲的内容是能被2和5整除的数的特征,也就是讨论什么样的数能被2或5整除。

1.能被2整除的数的特征

因为任何整数乘以2,所得乘数的个位数只有0,2,4,6,8五种情况,所以,能被2整除的数的个位数一定是0,2,4,6或8。也就是说,凡是个位数是0,2,4,6,8的整数一定能被2整除,凡是个位数是1,3,5,7,9的整数一定不能被2整除。

例如,38,172,960等都能被2整除,67,881,235等都不能被2整除。

能被2整除的整数称为偶数,不能被2整除的整数称为奇数。

0,2,4,6,8,10,12,14,?就是全体偶数。

1,3,5,7,9,11,13,15,?就是全体奇数。

偶数和奇数有如下运算性质:

小学奥数基础教程(三年级) 偶数±偶数=偶数,

奇数±奇数=偶数,

偶数±奇数=奇数,

奇数±偶数=奇数,

偶数×偶数=偶数,

偶数×奇数=偶数,

奇数×奇数=奇数。

例1在1~199中,有多少个奇数?有多少个偶数?其中奇数之和与偶数之和谁大?大多少?

例2(1)不算出结果,判断数(524+42-429)是偶数还是奇数?

(2)数(42□+30-147)能被2整除,那么,□里可填什么数?

(3)下面的连乘积是偶数还是奇数?

1×3×5×7×9×11×13×14×15。

- 40 -

例3在黑板上先写出三个自然数3,然后任意擦去其中的一个,换成所剩两个数的和。照这样进行100次后,黑板上留下的三个自然数的奇偶性如何?它们的乘积是奇数还是偶数?为什么?

例4由0,3,5写成的没有重复数字的三位数中,有哪些能被5整除?

例5下面的连乘积中,末尾有多少个0?

1×2×3×?×29×30。

练习18

1.在20~200的整数中,有多少个偶数?有多少个奇数?偶数之和与奇数之和谁大?大多少?

小学奥数基础教程(三年级)

2.不算出结果,直接判断下列各式的结果是奇数还是偶数:

(1)1+2+3+4+5;

(2)1+2+3+4+5+6+7;

(3)1+2+3+?+9+10;

(4)1+3+5+?+21+23;

(5)13-12+11-10+?+3-2+1。

3.由4,5,6三张数字卡片能组成多少个能被2整除的三位数?

4.两个质数之和是13,这两个质数之积是多少?

5.下面的连乘积中,末尾有多少个0?

20×21×22×?×49×50。

- 41 -

6.用0,1,2,3,4,5这六个数码组成的没有重复数字的两位数中,能被5整除的有几个?能被2整除的有几个?能被10整除的有几个?

第19讲 能被3整除的数的特征

上一讲我们讲了能被2,5整除的数的特征,根据这些特征,很容易就能判别出一个数是否能被2或5整除。同学们自然会问,有没有类似的简便方法,直接判断一个数能否被3整除?

我们先具体观察一些能被3整除的整数:

18,345,4737,25674

18能被3整除,1+8=9也能被3整除;

345能被3整除,3+4+5=9也能被3整除;

4737能被3整除,4+7+3+7=21也能被3整除;

25674能被3整除,2+5+6+7+4=24也能被3整除。

怎么这么巧?我们再试一个:7896852能被3整除,7+8+9+6+8+5+2=45也能被3整除。好了,不用再试了,同学们可能已经在想:“是不是所有能被3整除的数的各位数字的和都能被3整除?”结论是肯定的。它的一般性证明这里无法介绍,我们用一个具体的数来说明一般性的证明方法。

小学奥数基础教程(三年级) 由(7+4+1)能被3整除,推知741能被3整除。

因此,判断一个整数能否被3整除的简便方法是: - 42 - 由99和9都能被3整除,推知(7×99+4×9)能被3整除。再由741能被3整除,推知(7+4+1)能被3整除;反之,

如果整数的各位数字之和能被3整除,那么此整数能被3整除。如果整数的各位数字之和不能被3整除,那么此整数不能被3整除。

例1判断下列各数是否能被3整除:

2574,38974,587931。

例2六位数

例3由1,3,5,7这四个数字写成的没有重复数字的三位数中,有几个能被3整除?

例4被2,3,5除余1且不等于1的最小整数是几?

例5同时能被2,3,5整除的最小三位数是几?

练习19

1.直接判断25874和978651能否被3整除。

3.由2,3,4,5这四个数字写成的没有重复数字的三位数中,有几个能被3整除?

4.(1)被2,3除余1且不等于1的最小整数是几?

(2)被3,5除余2且不等于2的最小整数是几?

5.同时能被2,3,5整除的最小自然数是几?

6.同时能被2,3,5整除的最大三位数是几?

能被3整除,数字a=?

小学奥数基础教程(三年级) - 43 -

7.一根铁丝长125厘米,要把它剪成长2厘米、3厘米、5厘米的三种不同规格的小段。最多能剪成多少段?

第20讲 乘、除法的运算律和性质

我们在第1讲中介绍了加、减法的运算律和性质,利用它们可以简化一些加、减法算式的计算。本讲将介绍在巧算中常用的一些乘、除法的运算律和性质,其目的也是使一些乘、除法计算得到简化。

1.乘法的运算律

乘法交换律:两个数相乘,交换两个数的位置,其积不变。即

a×b=b×a。

其中,a,b为任意数。

例如,35×120=120×35=4200。

乘法结合律:三个数相乘,可以先把前两个数相乘后,再与后一个数相乘,或先把后两个数相乘后,再与前一个数相乘,积不变。即

a×b×c=(a×b)×c=a×(b×c)。

注意:

(1)这两个运算律中数的个数可以推广到更多个的情形。即多个数连乘中,可以任意交换其中各数的位置,积不变;多个数连乘中,可以任意先把几个数结合起来相乘后,再与其它数相乘,积不变。

(2)这两个运算律常一起并用。例如,并用的结果有

a×b×c=b×(a×c)等。

例1计算下列各题:

(1)17×4×25; (2)125×19×8;

(3)125×72; (4)25×125×16。

例2计算下列各题:

(1)125×(40+8); (2)(100-4)×25;

(3)2004×25; (4)125×792。

小学奥数基础教程(三年级)

例3计算:

(1)425÷25;(2)3640÷70。

例4计算下列各题:

(1)(182+325)÷13;

(2)(2046-1059-735)÷3;

(3)775÷25;

(4)2275÷13÷5。

例5计算下列各题:

(1)136×5÷8 (2)4032÷(8×9) (3)125×(16÷10) (4)2560÷(10÷4)

(5)2460÷5÷2 (6)527×15÷5 (7)(54×24)÷(9×4)

练习20

用简便方法计算下列各题。

1.(1)12×4×25;(2)125×13×8;(3)125×56;(4)25×32×125。 - 44 -

小学奥数基础教程(三年级)

2.(1)125×(80+4);(2)(100-8)×25;(3)180×125;(4)125×88。

3.(1)1375÷25;(2)12880÷230。

4.(1)(128+1088)÷8;

(2)(1040-324-528)÷4;

(3)1125÷125;

(4)4505÷17÷5。

5.(1)384×12÷8;

(2)2352÷(7×8);

(3)1200×(4÷12);

(4)1250÷(10÷8);

(5)2250÷75÷3;

(6)636×35÷7;

(7)(126×56)÷(7×18)。

第21讲 乘法中的巧算 - 45 -

上一讲我们介绍了乘、除法的一些运算律和性质,它是乘、除法中巧算的理论根据,也给出了一些巧算的方法。本讲在此基础上再介绍一些乘法中的巧算方法。

1.乘11,101,1001的速算法

一个数乘以11,101,1001时,因为11,101,1001分别比10,100,1000大1,利用乘法分配律可得 a×11=a×(10+1)=10a+a,

a×101=a×(101+1)=100a+a,

a×1001=a×(1000+1)=1000a+a。

例如,38×101=38×100+38=3838。

2.乘9,99,999的速算法

一个数乘以9,99,999时,因为9,99,999分别比10,100,1000小1,利用乘法分配律可得

a×9=a×(10-1)=10a-a,

a×99=a×(100-1)=100a- a,

小学奥数基础教程(三年级) a×999=a×(1000-1)=1000a-a。

例如,18×99=18×100-18=1782。 - 46 -

上面讲的两类速算法,实际就是乘法的凑整速算。凑整速算是当乘数接近整十、整百、整千??的数时,将乘数表示成上述整十、整百、整千??与一个较小的自然数的和或差的形式,然后利用乘法分配律进行速算的方法。 例1 计算:

(1) 356×1001 (2) 38×102 (3)526×99 (4)1234×9998

3.乘5,25,125的速算法

一个数乘以 5,25,125时,因为 5×2=10,25×4=100,125×8=1000,所以可以利用“乘一个数再除以同一个数,数值不变”及乘法结合律,得到

例如,76×25=7600÷4=1900。

上面的方法也是一种“凑整”,只不过不是用加减法“凑整”,而是利用乘法“凑整”。当一个乘数乘以一个较小的自然数就能得到整十、整百、整千??的数时,将乘数先乘上这个较小的自然数,再除以这个较小的自然数,然后利用乘法结合律就可达到速算的目的。

例2 计算:

(1) 186×5 (2) 96×125

例3 计算:

(1) 84×75 (2)56×625 (3) 33×125 (4) 39×75

练习21

用速算法计算下列各题:

1.(1) 68×101; (2) 74×201;

(3) 256×1002; (4) 154×601。

2.(1)45×9; (2)457×99;

(3)762×999; (4) 34×98。

3.(1)536×5; (2)437×5;

(3)638×15; (4)739×15。

4.(1)32×25; (2)17×25;

(3)130×25; (4)68×75;

(5)49×75; (6)87×75。

小学奥数基础教程(三年级)

5.(1)56×125; (2)77×125;

(3)66×375; (4) 256×625;

(5)555×375; (6)888×875。

6.(1)295×295; (2)705×705。

第22讲 横式数字谜(二)

第2讲我们初步介绍了简单的横式填数问题。这一讲再继续介绍一些此类问题。 例1 在下列各式的□里填上合适的数字:

(1)237÷□□=□;

(2)368÷□□=□□;

(3)14×□□=3□8。

例2 在下列各式的□里填上合适的数:

(1)□÷32=7??29;

(2)480÷156=□??12;

(3)5367÷□=83??55。

例3 在下列各式的□里填入合适的数字,使等式成立:

(1)□5□×23=5□□2;

(2)9□□4÷48=□0□。

例4 在下列各题中,每一题的四个□中都填同一个数字,使式子成立: - 47 -

小学奥数基础教程(三年级) (1)□+□>□×□;

(2)□+□=□×□;

(3)□+□<□×□。

例5 在下式的□中填入合适的数字,并要求等式中没有重复的数字:

756=□×□□□。

例6 将0,1,2,3,4,5,6七个数字分别填入下式的七个□里,使算式成立: □□÷□=□×□=□□。

练习22

1.在下列各式的□中分别填入相同的两位数:

(1)5×□=2□;

(2)6×□=3□。

2.将3~9中的数填入下列各式,使算式成立,要求各式中无重复的数字:

(1)□÷□=□÷□;

(2)□÷□>□÷□。

3.在下列各式的□中填入合适的数字:

(1)448÷□□=□;

(2)2822÷□□=□□;

(3)13×□□= 4□6。

4.在下列各式的□中填入合适的数:

(1) □÷32=8??31; - 48 -

小学奥数基础教程(三年级) (2)573÷32=□??29;

(3)4837÷□=74??27。

5.在下列各式的□中填入合适的数字,要求各等式中无重复的数字:

(1)342÷□□=□;

(2)□×□□□=567。

6.将1~9这九个数字分别填入下式中的九个□里,使连等式成立: □÷□=□÷□=□□□÷□□。

第23讲 竖式数字谜(三)

在第4讲的基础上,再讲一些乘数、除数是两位数的竖式数字谜问题。 例1 在下列乘法竖式的□中填入合适的数字: - 49 -

例2 在左下式的□中填入合适的数字。

例3 在左下式的□中填入合适的数字。

小学奥数基础教程(三年级)

- 50 -

例4 在左下式的□中填入合适的数字。

练习23

1.在下列各式的□中填入合适的数字:

2.下列各题中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。求出这些数字代表的数。

3.在下列各式的□中填入合适的数字:

4.在下面的竖式中,被除数、除数、商、余数的和是709。请填上各□中的数字。

小学奥数基础教程(三年级)

- 51 -

第24讲 和倍应用题

小学数学中有各种各样的应用题。根据它们的结构形式和数量关系,形成了一些用特定方法解答的典型应用题。比如,和倍应用题、差倍应用题、和差应用题等等。

和倍应用题的基本“数学格式”是:

已知大、小二数的“和”,又知大数是小数的几倍,求大、小二数各是多少。

上面的问题中有“和”,有“倍数”,所以叫做和倍应用题。为了清楚地表示和倍问题中大、小二数的数量关系,画出线段图如下:

从线段图知,“和”是小数的(倍数+1)倍,所以,

小数=和÷(倍数+1)。

上式称为和倍公式。由此得到

大数=和-小数,

或 大数=小数×倍数。

例如,大、小二数的和是265,大数是小数的4倍,则

小数=265÷(4+1)=53,

大数=265-53=212或53×4=212。

例1 甲、乙两仓库共存粮264吨,甲仓库存粮是乙仓库存粮的10倍。甲、乙两仓库各存粮多少吨?

分析:把甲仓库存粮数看成“大数”,乙仓库存粮数看成“小数”,此例则是典型的和倍应用题。根据和倍公式即可求解。

例2 甲、乙两辆汽车在相距360千米的两地同时出发,相向而行,2时后两车相遇。已知甲车的速度是乙车速度的2倍。甲、乙两辆汽车每小时各行多少千米?

例3 甲队有45人,乙队有75人。甲队要调入乙队多少人,乙队人数才是甲队人数的3倍?

小学奥数基础教程(三年级)

例4 妹妹有书24本,哥哥有书53本。要使哥哥的书是妹妹的书的6倍,妹妹应给哥哥多少本书?

仿照例3的分析可得如下解法。

- 52 -

例5 大白兔和小灰兔共采摘了蘑菇160个。后来大白兔把它的蘑菇给了其它白兔20个,而小灰兔自己又采了10个。这时,大白兔的蘑菇是小灰兔的5倍。问:原来大白兔和小灰兔各采了多少个蘑菇?

练习24

1.小敏与爸爸的年龄之和是64岁,爸爸的年龄是小敏的3倍。小敏和她爸爸的年龄各是多少岁?

2.一肉店卖出猪肉和牛肉共560千克,卖出的猪肉是卖出的牛肉的4倍。猪、牛肉各卖了多少千克?

3.甲、乙两桶汽油共84千克。如果把乙桶中的油倒入甲桶15千克,那么这时甲桶中的汽油等于乙桶中的汽油的3倍。甲、乙两桶原有汽油各多少千克?

4.甲、乙两人共生产零件100个,其中甲有2个零件、乙有5个零件不合格。已知乙生产的合格零件是甲生产的合格零件的2倍。甲、乙各生产了多少个零件?

5.团结村原有水田290公顷,旱田170公顷。要把多少公顷旱田改为水田,才能使水田的公顷数比旱田的公顷数多2倍?

小学奥数基础教程(三年级)

- 53 -

6.红星小学图书馆内,科技书是故事书的3倍,连环画书又是科技书的2倍。已知这三种书共有1600本,那么每种书各有多少本?

第25讲 差倍应用题

与和倍应用题相似的是差倍应用题。它的“基本数学格式”是:

已知大、小二数之“差”,又知大数是小数的几倍,求大、小二数各是多少。

上面的问题中,有“差”、有“倍数”,所以叫做差倍应用题。差倍问题中大、小二数的数量关系可以用下面的线段图表示:

从线段图知,“差”是小数(即“1倍”数)的(倍数-1)倍,所以,

小数=差÷(倍数-1)。

上式称为差倍公式。由此得到

大数=小数+差,

大数=小数×倍数。

例如,大、小数之差是152,大数是小数的5倍,则

小数=152÷(5-1)=38,

大数=38+152=190或38×5=190。

例1 王师傅一天生产的零件比他的徒弟一天生产的零件多128个,且是徒弟的3倍。师徒二人一天各生产多少个零件?

例2 两根电线的长相差30米,长的那根的长是短的那根的长的4倍。这两根电线各长多少米?

例3 甲、乙二工程队,甲队有56人,乙队有34人。两队调走同样多人后,甲队人数是乙队人数的3倍。问:调动后两队各还有多少人?

小学奥数基础教程(三年级)

- 54 -

例4 甲、乙两桶油重量相等。甲桶取走26千克油,乙桶加入14千克油,这时,乙桶油的重量是甲桶油的重量的3倍。两桶油原来各有多少千克?

例5 小云比小雨少20本书,后来小云丢了5本书,小雨新买了11本书,这时小雨的书比小云的书多2倍。问:原来两人各有多少本书?

练习25

1.大仓库存粮比小仓库存粮多254吨。又知大仓库存粮是小仓库存粮的3倍。大、小仓库各存粮多少吨?

2.一养鸡场,公鸡比母鸡少369只,母鸡是公鸡的4倍。公鸡、母鸡各多少只?

3.小林今年9岁,他爸爸今年35岁。小林多少岁时,他爸爸的年龄正好是他的3倍?

4.一车间男工26人,女工14人。调走男、女工同样多的人后,男工人数是女工人数的3倍。剩下的男、女工各多少人?

5.甲、乙二数相等。甲数加上50,乙数减去34后,甲数就是乙数的4倍。原来甲、乙两数等于几?

6.两根同样长的电线,第一根用去37米,第二根用去16米后,第二根的长度是第一根长度的4倍。两根电线原来有多长?

小学奥数基础教程(三年级)

7.大、小二数之差是504。大数个位数是0,去掉这个0,正好是小数。大、小数各是多少?

第26讲 和差应用题

- 55 -

小学奥数基础教程(三年级)

- 56 -

小学奥数基础教程(三年级)

- 57 -

小学奥数基础教程(三年级)

- 58 -

第27讲 巧用矩形面积公式

同学们都知道求正方形和长方形面积的公式:

正方形的面积=a×a(a为边长),

长方形的面积=a×b(a为长,b为宽)。

利用这两个公式可以计算出各种各样的直角多边形的面积。例如,对左下图,我们无法直接求出它的面积,但是通过将它分割成几块,其中每一块都是正方形或长方形(见右下图),分别计算出各块面积再求和,就得出整个图形的面积。

小学奥数基础教程(三年级) 例1 右图中的每个数字分别表示所对应的线段的长度(单位:米)。这个图形的面积等于多少平方米?

- 59 -

例2 右图为一个长50米、宽25米的标准游泳池。它的四周铺设了宽2米的白瓷地砖(阴影部分)。求游泳池面积和地砖面积。

例3 下图中有三个封闭图形,每个封闭图形均由边长为1厘米的小正方形组成。试求各图形的面积。

小学奥数基础教程(三年级) 2- 60 - 例4 一个长方形的周长是22厘米。如果它的长和宽都是整数厘米,那么这个长方形的面积(单位:厘米)有多少种

可能值?最大、最小各是多少?

练习27

1.甲、乙两块地都是长方形,且一样长。

(1)如果甲地面积是乙地面积的2倍,那么甲地的宽是乙地的宽的多少倍?

(2)如果甲地的宽是乙地的宽的3倍,那么甲地面积是乙地面积的多少倍?

2.求下列各图的面积。(单位:厘米)

3.把边长为40米的正方形运动场扩为长60米、宽50米的长方形运动场。此运动场面积扩大了多少?周长增加了多少?

4.一个正方形的面积是144米。如果它被分成六个相同的长方形(如左下图),那么,其中一个长方形的面积和周长各是多少?

2

5.右上图是用30根长4厘米的小棍摆成的图形。这个图形的面积是多少?用这些小棍摆成的面积最大的直角多边形比这个图形的面积大多少?

6.左下图的面积是52厘米,其中每个小方格都是一个正方形。这个图形的外沿的周长是多少?

2

小学奥数基础教程(三年级) 7.右上图由11个同样的正方形组成。如果这个图形的周长是96厘米,那么它的面积是多少?

第28讲 一笔画(一)

如果一个图形可以用笔在纸上连续不断而且不重 - 61 -

复地一笔画成,那么这个图形就叫一笔画。显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。

同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。

所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?

当时的许多人都热衷于解决七桥问题,但是都没成功。后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。

我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。

欧拉的一笔画原理是:

(1)一笔画必须是连通的(图形的各部分之间连接在一起);

(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;

(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;

(4)奇点个数超过两个的图形不是一笔画。

小学奥数基础教程(三年级) 一个散步者不可能不重复地一次走遍这七座桥。

顺便补充两点:

(1)一个图形的奇点数目一定是偶数。 - 62 - 利用一笔画原理,七桥问题很容易解决。因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以

因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之和是奇数),与偶点相连的线的端点数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾。所以一个图形的奇点数目一定是偶数。

(2)有K个奇点的图形要K÷2笔才能画成。

例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画。如果我们将其中的两个奇点间的连线去掉一条,那么这两个奇点都变成了偶点,如果能去掉两条这样的连线,使图中的六个奇点变成两个,那么新图形就是一笔画了。将线段GF和BJ去掉,剩下I和E两个奇点(见右下图),这个图形是一笔画,再添上线段GF和BJ,共需三笔,即( 6 ÷2)笔画成。

一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。如左下图中的B,C两个奇点在右下图中都变成了偶点。所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。

到现在为止,我们已经学会了如何判断一笔画和多笔画,以及怎样添加连线将多笔画变成一笔画。 练习28

1.下列图形分别是几笔画?怎样画?

2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?

小学奥数基础教程(三年级) 3.从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?

- 63 -

4.如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸。问:一个散步者能否一次不重复地走遍这七座桥?

第29讲 一笔画(二)

利用一笔画原理,我们可以解决许多有趣的实际问题。

例1 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。如果能,应从哪开始走?

例2 一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。怎样走才能使所走的行程最短?全程多少千米?

例3右图中每个小正方形的边长都是100米。小明沿线段从A点到B点,不许走重复路,他最多能走多少米?

例4在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D。已知它们的爬速相同,哪只蚂蚁能获胜?

小学奥数基础教程(三年级) 练习29 - 64 -

1.邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?

2.有一个邮局,负责21个村庄的投递工作,右上图中的点表示村庄,线段表示道路。邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?

3.一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?

第30讲 包含与排除

同学们对这个题目可能很陌生,为了搞清楚什么是“包含与排除”,大家先一起回答两个问题:

(1) 两个面积都是4厘米的正方形摆在桌面上(见左下图),它们遮盖住桌面的面积是8厘米吗?

22

(2)一个正方形每条边上有6个点(见右上图),四条边上一共有24个点吗?

聪明的同学马上就会发现:

(1)两个正方形的面积和是8厘米,现在它们有一部分重叠了。因此盖住桌面的面积应当从两个正方形的面积和中减去重叠的这部分面积,所以盖住桌面的面积应少于8厘米。

(2)四个角上的点每个点都在两条边上,因此被重复计算了,在求四条边上共有多少点时,应当减去重复计算的点,所以共有 6×4-4= 20(个)点。

这两个问题,在计算时,都采用了“去掉”重复的数值(面积或个数)的方法。

一般地,若已知A,B,C三部分的数量(见右图),其中C为A,B的重复部分,则图中的数量就等于 A+ B- C。

因为A,B有互相包含(重复)的部分C,所以,在求A和B合在一起的数量时,就要在A+B中减去A和B互相包含的部分C。这种方法称为包含排除法。

22

小学奥数基础教程(三年级) 有明确提出“包含排除法”。 - 65 - 实际上,我们前面已经遇到过包含与排除的问题。如,第10讲“植树问题”的例3和例4,只不过那时我们没

例1 把长38厘米和53厘米的两根铁条焊接成一根铁条。已知焊接部分长4厘米,焊接后这根铁条有多长?

例2某小学三年级四班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。这个班有多少人参加了语文或数学兴趣小组?

例3 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了。这个班既没参加美术小组也没参加音乐小组的有多少人?

例4 三年级科技活动组共有63人。在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人。每个同学都至少完成了一项活动。问:同时完成这两项活动的同学有多少人?

例5 在前100个自然数中,能被2或3整除的数有多少个?

小学奥数基础教程(三年级) 练习30 - 66 -

1.三年级四班组织了一次象棋和军棋的棋类比赛,参加象棋比赛的有35人,参加军棋比赛的有24人,有16人两项比赛都参加了。这个班参加棋类比赛的共有多少人?

2.某校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人。这个表演队共有多少人能登台表演歌舞?

3.一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了。一班有多少人两项比赛都没有参加?

4.甲、乙两家合住在一套单元房里。甲家能够使用的面积(包括厨房、厕所、走廊等,下同)有56米2,乙家能够使用的面积有65米2,甲、乙两家都能使用的面积有30米2。求这套单元的使用面积。

5.在自然数1~100中,能被3或5中任一个整除的数有多少个?

6.在自然数1~100中,不能被2,3中任一个整除的数有多少个?

小学奥数基础教程(三年级)

- 67 -

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com