haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

牛吃草

发布时间:2013-11-02 08:04:07  

“牛吃草”终极奥义篇【续】更新四道题型! 序章:问题提出

我将“牛吃草”归纳为两大类,用下面两个例题来说明 例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。那么它可供21头牛吃几天?

例2.有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?

分析与解:例1是在同一块草地上,例2是三块面积不同的草地.(这就两者本质的区别)

第一章:核心思路

[普通解法请参考上面三位前辈的帖子。我没把链接做好,不好意思]

现在来说我的核心思路:

例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。那么它可供21头牛吃几天? 将它想象成一个非常理想化的数学模型:假设27头牛中有X头是“剪草工”

,这X头牛只负责吃“每天新长出的草,并且把它们吃完”,这样以来草场相当于不长草,永远维持原来的草量,而剩

下的(27-X)头牛是真正的“顾客”,它们负责把草场原来的草吃完。(请慢慢理解,这是关键)

例1:

解:设每天新增加草量恰可供X头牛吃一天,21牛可吃Y天(后面所有X均为此意)

可供27头牛吃6天,列式:(27-X)〃6 注:(27-X)头牛6天把草场吃完

可供23头牛吃9天,列式:(23-X)〃9 注:(23-X)头牛9天把草场吃完

可供21头牛吃几天?列式:(21-X)〃Y 注:(21-X)头牛Y天把草场吃完

因为草场草量已被“清洁工”修理过,总草量相同,所以,联立上面1、2、3

(27-X)〃6=(23-X)〃9=(21-X)〃Y (27-X)〃6=(23-X)〃9 【1】

(23-X)〃9=(21-X)〃Y 【2】

解这个方程组,得 X=15(头) Y=12(天)

例2:有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?

解析:现在是三块面积不同的草地.为了解决这个问题,需要将三块草地的面积统一起来.(这是面积不同时得解题关键)

求【5,6,8】得最小公倍数为120

1、因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11*24=264(头)牛吃10天.

2、因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12*20=240(头)牛吃14天. 3、120÷8=15,问题变为:120公顷草地可供19*15=285(头)牛吃几天?

这样一来,例2就转化为例1,同理可得:

(264-X)〃10=(240-X)〃14=(285-X)〃Y (264-X)〃10=(240-X)〃14 【1】 (240-X)〃14=(285-X)〃Y 【2】 解方程组:X=180(头) Y=8(天)

典型例题“牛吃草”已介绍完毕。

第二章:“牛吃草”变型

以下几道题目都是“牛吃草”的变型,解法和上面我讲的一摸一样,因为我在前边写的很详细了,所以下面的例题不再给出详解,略作说明即可。请大家自行验证。

例3 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?

解析:本题的不同点在草匀速减少,不管它,和前边设X、Y一样来理想化,解出的X为负数(无所谓,因为X是我们理想化的产物,没有实际意义),解出Y为我们所求。

例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级? 解析:总楼梯数即总草量,设略

列式(20-X)〃5=(15-X)〃6

X=-10(级)???(例3已说过,X是理想化的产物,没有实际意义)

将X=-10代入(20-X)〃5得150级楼梯

例5 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分

钟.如果同时打开7个检票口,那么需多少分钟? 解析:原有旅客即原有草量,新来排队得旅客即每天新长出得草量,其它不用我多说了吧。

例6现欲将一池塘水全部抽干,但同时有水匀速流入池塘。若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。问:若要5天抽干水,需多少台同样的抽水机来抽水?

解析:原有水量即原有草量,新匀速注入得水即每天新长出得草量,继续。。。。。。

例7一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水? 解析:(10-X)*3=(5-x)*8=(n-x)*2。

例8、牧场有一片青草,每天生成速度相同。现在这片牧场可供16头牛吃20天,或者供80只羊吃12天,如果一头牛一天吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?

解析:思路,把羊转化为牛

4羊=1牛,“也可以供80只羊吃12天”相当于“20头

牛吃12天”

现在是“10头牛与60只羊一起吃这一片草”相当于“10+60÷4=25头牛吃草”

[16-x]*20=[20-x]*12=[25-x]*y

x=10 y=8

例9.某牧场上长满牧草,,每天匀速生长,这片牧草供17头牛吃30天,19头牛吃24天,现有一群牛吃了6天,主人卖掉了4头牛,余下的牛吃了两天后刚好把草吃完,问这群牛原有几头?

解:设原有Y头,x还是“剪草的”

[17-x]*30=[19-x]*24=[y-x]*6+[y-4-x]*2

注意:剩下的2天已经卖掉了4头牛,要分开计算 (y-x-4)*(6+2),这样列式就错了

x=9 y=40

例10.某市水库水量的增长速度是一定的,可供全市12万人使用20年,在迁入3万人之后,只能供全市人民使用15年,市政府号召大家节约用水,希望将水库的使用寿命延长至30年,那么居民平均需要节约用水量的比例是多少?( )

A. 2/5 B. 2/7 C. 1/3 D. 1/4

解析:

[12-x]*20=[15-x]*15=[y-x]*30

x=3 y=9万人

15-9=6

即多出6万人,这6万人要用15万人的6/15=2/5

例11.有一个水池,池底有一个出水口,用3台抽水机24小时可将水抽完,用9台抽水机12小时可将水抽完。如果仅靠出水口出水,那么多长时间将水漏完? 解析:

(3-X)*24=(9-X)*12 得X=-3(不要理会负数,按正3理解好了)

带入X到上式,((3+3)*24)/X=48所以是48

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com