haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

希望杯第六届(1995年)初中一年级第2试试题

发布时间:2013-11-07 08:05:01  

希望杯第六届(1995年)初中一年级第2试试题

一、选择题:

1.若y是正数,且x+y<0,则在下列结论中,错误的一个是 [ ]

A.x3y>0. B.x+│y│<0.C.│x│+y>0. D.x-y2<0.

2.已知│a│=-a,则化简│a-1│-│a-2│所得的结果是 [ ]

A.-1. B.1.C.2a-3. D.3-2a.

3.已知a=1995x+1994,b=1995x+1995,c=1995x+1996.那么(a-b)2+(b-c)2+(c-a)2的值等于[ ]

A.4. B.6. C.8. D.10.

4.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°)可以画出大于0°且小于176°的不同角度的角共有_____种.

[ ].

A.8. B.9.C.10. D.11.

5.数轴上坐标是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为1995厘米的线段AB,则线段AB盖住的整点是[ ]个.

A.1994或1995. B.1994或1996.C.1995或1996. D.1995或1997.

6.方程1995x+6y=420000的一组整数解(x、y)是[ ]

A.(61,48723). B.(62,48725).C.(63,48726). D.(64,48720).

7.某同学到集贸市场买苹果,买每公斤3元的苹果用去所带钱数的一半,而其余的钱都买了每公斤2元的苹果,则该同学所买的苹果的平均价格是每公斤_____元.

[ ]

A.2.6. B.2.5. C.2.4. D.2.3.

, 8.a、b、c的大小关系如图7所示

则a?bb?cc?aab?ac???的值是[ ] a?bb?cc?aab?ac

A.-1. B.1. C.2. D.3.

9.设P=-

[ ]

A.P>Q>R. B.Q>P>R.C.P>R>Q. D.R>Q>P. 111,Q=-,R=-,则P,Q,R,的大小关系是12345?1234612344?1234612344?12345

10.某项球类规则达标测验,规定满分100分,60分及格,模拟考试与正式考试形式相

同,都是25道选择题,第题答对记4分,答错或不答记0分.并规定正式考试中要有80分的试题就是模拟考试中的原题.假设某人在模拟考试中答对的试题,在正式考试中仍能答对,某人欲在正式考试中确保及格,则他在模拟考试中,至少要得 [ ]

A.80分.

二、填空题

1.计算:12+2-3×4÷5+62+7-8×9÷10=_____.

2.若a+b<0,则化简│a+b-1│-│3-a-b│的结果是_____.

3.某市举行环城自行车比赛,跑的路线一圈

是6千米,甲车速是乙车速的,在出发后1小时10分钟时,甲,乙二人恰在行进中第二次相遇,则乙车比甲车每分钟多走_____千米.

4.如图8,两条线段AB、CD将大长方形分成四个小长方形,其中S1面积是8,S2的面积是6,S3的面积是5.则阴影三角形的面积是_____.

5.若n=1?B.76分.C.75分. D.64分. 17911131517?????,则n的负倒数是______. 3122030425672

6.一次数学小测验共有十道选择题,每题答对得3分,答错或不答均扣1分,则这次小测验的成绩至多有_____种可能的分数.

7.已知p、q均为质数,并且存在两个正整数m,n,使得p=m+n,q=mn,pp?qq

则n的值为_____. mm?n

8.如图9,已知△ABC中,∠C=90°,AC=1.5BC,在AC上取点D,

使得AD=0.5BC,量得BD=1cm,则△ABD的面积是________cm2.

????.则和数S的末四位数字的和是_____. 9.若S=15+195+1995+19995+?+?

44个91999?95

10.用分别写有数字的四张卡片,,,可以排出不同的四位数,如1234,1342,4231,?等等共24个,则其中可被22整除的四位数的和等于_____.

三、解答题

1.某班参加校运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的某3名运动员,他们运动服号码数之和不小于32,请你说明理由.

2.已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-的值.

17(a+b )2

答案·提示

一、选择题

提示:

1.∵y>0,若x≥0则x+y≥0,与x+y<0矛盾.所以由y>0,x+y<0必有x<0. 因此,x3<0,x3y<0,即(A)是错误的.

事实上,y>0,x+y<0,即x+│y│<0,(B)成立.│x│+y>0,(C)成立.x<0,y2>0,x-y2<0,(D)成立.因此,选(A).

2.∵│a│=-a,∴a≤0.

│a-1│-│a-2│=-(a-1)+(a-2)=-1,选(A).

3.a-b=(1995x+1994)-(1995x+1995)=-1

b-c=(1995x+1995)-(1995x+1996)=-1

c-a=(1995x+1996)-(1995x+1994)=2

∴ (a-b)2+(b-c)2+(c-a)2=(-1)2+(-1)2+22=6.选(B).

4.由于15°=45°-30°,所以15°可以画出.因为30°,45°,60°,90°都是15°的倍数.0°~176°之间度数为15°的倍数的角都可画出.这些不同度数的角共计11种,它们是:15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°.选

(D).

5.若所画的长为1995厘米的线段的两个端点A与B均为整点时,此时线段AB盖住的整点个数是1995+1=1996个.若A点不是整点,则B点也不是整点,此时线段AB盖住的整点个数为1995个,所以长为1995厘米的线段盖住的整点是1995个,所以长为1995厘米的线段盖住的整点是1995或1996个.选(C).

6.设x,y均为整数,且满足1995x+6y=420000.

则5│1995x,5│420000,所以5│6y.

但(5,6)=1,因此5│y.所以排除(A),(C).对(B),若(62,48725)满足方程,则 事实上,1995×64+6×48720=420000成立.选(D).

7.设该同学买了3元一公斤的苹果x公斤,

2

了x+y公斤苹果,花去了3x+2y=6x元.所以所买的

8.从图9中可见,a<b<c且a<0,b<0,c>0

所以a-b<0,b-c<0,c-a>0,ab>0,ac<0

所以ab-ac>0,

=(-1)-(-1)+1+1=2.选(C).

9.因为12344<12345<12346

所以12344×12345<12344×12346<12345×

12346

即R<Q<P.选(A).

10.设在模拟考试中至少要得x分,则在模拟

解得x≥80.即某人欲在正式考试中确保及格,则他在模拟考试中至少要得80分.选(A).

二、填空题

提示:

1.原式=1+2-3×4÷5+36+7-8×9÷10=3-12÷5+36+7-72÷10=3-2.4+43-7=36.4

2.∵a+b<0,a+b-1<0,3-a-b=3-(a+b)>0

∴│a+b-1│-│3-a-b│

=-(a+b-1)-(3-a-b)=-a-b+1-3+a+b=-2

甲、乙二人在行进中第二次相遇,乙要追过甲两圈,所以

解得 x=36(千米/小时),即乙车速36千米/

因此,乙车比甲车每分钟多走

4.如图8,设AB、CD交于O,阴影三角形面积为S,则矩形

6.设这次小测验答对x道题,则有10-x道题答错或没答,应得分数

w=3x-(10-x)=4x-10

因此,可能得到的分数为偶数,且不被4整除,又最高得分为满分30分,最低得分为-10分,在-10~30之间被2整除但不被4整除的数有-10,-6,-2,2,6,10,14,18,22,26,30共11种可能,容易验证,这11种分数值都是可以取到的.

7.∵q是质数,q=m×n,

所以m,n只能一个为1,另一个为q.

此时p=m+n=1+q,而p又是质数,只能p=3,q=2.

即m,n一个是1,另一个是2.

即△BCD为等腰直角三角形(图10),四个等腰

9.S=(20-5)+(200-5)+(2000-5)+(20000-5)+?+(-5)

=20+200+2000+20000+?+-5×45=-225

所以S的末四位数字的和为1+9+9+5=24

10.在由1,2,3,4组成的24个四位数中,末位数字是1,3的不能被22整除,这样的数共12个,而其余12个末位数字是偶数,有可能被22整除,它们是

1234,1324,1432,1342,2134,2314,

3124,3412,3142,3214,4132,4312.

由奇位数字和减去偶位数字和之差是11倍数者,原数为11的倍数,可知其中被11整除的只有1342,2134,3124,4312.即这四个数被22整除,它们的和是

1342+2134+3124+4312=10912

三、解答题

1.证:在圆周上按逆时针顺序以1号为起点记运动服号码数为a1,a2,a3,?,a18,a19(图11),显然a1=1,而a2,a3,?,a18,a19就是2,3,4,5,6,?,18,19的一个排列

令A1=a2+a3+a4

A2=a5+a6+a7

A3=a8+a9+a10

A4=a11+a12+a13

A5=a14+a15+a16

A7=a17+a18+a19

则A1+A2+A3+A4+A5+A6

=a2+a3+a4+?+a17+a18+a19

=2+3+4+?+17+18+19

=189

如果A1,A2,A3,A4,A5,A6中每一个都≤31,则有A1+A2+A3+A4+A5+A6≤6×31=186,与(*)式矛盾.所以A1,A2,A3,A4,A5,A6中至少有一个大于31.为确定起见,不妨

就是A1>31,即a2+a3+a4>31,但a2+a3+a4是整数,所以必有a2+a3+a4≥32成立.即一定有顺次相邻的某三名运动员,他们运动服号码数之和不小于32.

说明:本试题来源于一道常见的试题,“将1,2,3,4,?,17,18,19这19个自然数任意排成一圈,必定能找到相邻的3个自然数,它们之和不小于30.”

其证法是,设这19个数在圆圈排列后依次逆时针顺序是a1,a2,?,a18,a19(图12),则

A1=a1+a2+a3

A2=a2+a3+a4

A3=a3+a4+a5

A4=a4+a5+a6

??

A17=a17+a18+a19

A18=a18+a19+a1

A19=a19+a1+a2

相加得A1+A2+?+A18+A19

=3(a1+a2+?+a18+a19)

=3×(1+2+3+4+?+17+18+19)

=570

若A1,A2,?,A18,A19这19个自然数都小于30,则A1+A2+?+A18+A19<19×30=570与(*)式矛盾.所以A1,A2,?,A18,A19中至少有一个不小于30.为确定起见,不妨设A1≥30,即a1+a2+a3≥30,即一定有顺相邻的3个数,其和不小于30.

但在写数排圈试验中不难发现,总会找到相邻3个数之和大于30,这表明30这个限不是最好的,我们可以改进到32.要达到这个结果,其一,找三数组的个数减小,平均值可能增大,原来找出19个数三数组,现在我们找出6个,且互不重复,这样,其用到19个中的18个数,显然有一个数没用在三数组中,这个数只有取a1=1时,才能使其余18个数之和尽可能大.以上这些想法已经包含着非智力因素在内的对问题灵活处理的综合能力.克报困难意识强,遇事思维开阔的学生,处理本题的能力会表现突出一些.

2.分析:已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406.形式很对称,很容易诱使你将ax+by=7两边平方,再减去ax2+by2=49,?想利用乘法公式算出xy,但一试发现此路不通.由于受所作某些训练题型模式的影响,很多同学仍企图走此路,以致最后陷入死胡同.

事实上,ax+by平方后必出现a2x2与b2y2,而ax2+by2中,a,b都不是平方,这一特点已经表明利用乘法公式去消项的方法很难走通.应及时转向,通过一项一项表示,往一起凑这个最基本的方式去做.

解:显然

ax2=49-by2, by2=49-ax2

ax3=49x-bxy2, by3=49y-ax2y

相加得

133=ax3+by3=49(x+y)-xy(ax+by)

49(x+y)-7xy=133

7(x+y)-xy=19

同理 ① ax3=133-by3,by3=133-ax3

ax4=133x-bxy3,by4=133y-ax3y

相加得

406=ax4+by4=133(x+y)-xy(ax2+by2)

即 133(x+y)-49xy=406

19(x+y)-7xy=58 ②

由①、②联立,设x+y=u,xy=v

得 7u-v=19

19u-7v=58,解得 u=2.5,v=-1.5

即 x+y=2.5,xy=-1.5

由 ax=7-by,by=7-ax

得 ax2=7x-bxy,by2=7y-axy

相加得49=ax2+by2=7(x+y)-xy(a+b)

所以 1.5(a+b)=49-7×2.5

∴ a+b=21

此时即可求得

=4987.5-9-178.5=4800

说明:本题虽然所用知识单元块均在初一学过,但解此题需要考生有较强的应变能力与

观察综合能力,并且计算也要很细心,因此本题属于对学生数学素质综合检查的题目.本题改编自下面的问题“已知ax+by=8,ax2+by2=22,ax3+by3=62,ax4+by4=178,试求1995(x+y)+6xy之值”.有兴趣的读者不防解一解看.答案是10011.再想一想,满足题设条件的a与b两数之和a+b等于多少?你能独立地求出a+b之值吗?(答a+b=3)

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com