haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

初中数学竞赛辅导资料—同一法

发布时间:2013-11-21 08:03:42  

初中数学竞赛辅导资料—同一法

甲内容提要

1. “同一法”是一种间接的证明方法。它是根据符合“同一法则”的两个互逆命题必等效的原理,当一个命题不易证明时,釆取证明它的逆命题。

2. 同一法则的定义是:如果一个命题的题设和结论都是唯一的事项时,那么它和它的逆命题同时有效。这称为同一法则。

互逆两个命题一般是不等价的。例如

原命题:福建是中国的一个省 (真命题)

逆命题:中国的一个省是福建 (假命题)

但当一命题的题设和结论都是唯一的事项时,则它们是等效的。例如 原命题:中国的首都是北京 (真命题)

逆命题:北京是中国的首都 (真命题)

因为世界上只有一个中国,而且中国只有一个首都,所以互逆的两个命题是等效的。又如 原命题:等腰三角形顶角平分线是底边上的高。(真命题)

逆命题:等腰三角形底边上的高是顶角平分线。(真命题)

因为在等腰三角形这一前提下,顶角平分线和底边上的高都是唯一的,所以互逆的两个命题是等效的。

3. 釆用同一法证明的步骤:如果一个命题直接证明有困难,而它与逆命题符合同一法则,则可釆用同一法,证明它的逆命题,其步骤是:

① 作出符合命题结论的图形(即假设命题的结论成立)

② 证明这一图形与命题题设相同(即证明它符合原题设)

乙例题

例1. 求证三角形的三条中线相交于一点

已知:△ABC中,AD,BE,CF都是中线

求证:AD,BE,CF相交于同一点

分析:在证明AD和BE相交于点G之后,本应再证明CF经过点G,这要证明三点共线,

,,直接证明不易,我们釆用同一法:连结并延长CG交AB于F,证明CF就是第三条中线

,,(即证明AF=FB)

证明:∵∠DAB+∠EBA<180 ∴AD和BE相交,设交点为G

, 连结并延长CG交AB于F

,连结DE交CF于M ∵DE∥AB

∴?

∴MEMDCMBF?MD==, 即= AF?BF?CF?AF?MEMEMDMGAF?MD==, 即= ????AFGFBFBFMEBF?AF?,,,=, ∴AF=BF,AF是BC边上的中线, AF?BF?

,∵BC边上的中线只有一条, ∴AF和AD是同一条中线

∴AD,BE,CF相交于一点G。

例3如图已知:四边形ABCD中,∠ABD=∠ADB=15?

∠CBD=45?,∠CDB=30?

求证:△ABC是等边三角形

证明:在BC或延长线上取点E,使BE=AB

连结AE,DE,则△ABE是等边三角形

AE=AB=AD,∠EAD=150?-60?=90?,∴∠ADE=45?

∵∠ADC=45,且DE,DC在DA的同一侧,

∴DE和DC重合,它们与BC边的交点E,C也重合

∴△ABC是等边三角形

例4.求证:2??2?=1 分析:直接证法,一般是把左边写成(2?5?2?)3再化简为1,但没有成功。

拟用同一法,可认为要证明的 原命题是:有两个数2?,2?,它们积是-1,则它们的和是1

那么逆命题是:若u+v=1,且uv=-1,则u=2?5,v=2?5

证明:设 u+v=1,且uv=-1,根据韦达定理的逆定理(初三教材)

得u,v是方程x2-x-1=0 的两个根

x=?1?2,即u,v分别等于1?5

2,1?5 2

而u3=(1?31?3)=2+, v3=()=2- 22

∴u=2?,v=2? 即2??2?=1

例5.已知:ACD是圆的割线,点B在圆上,且AB2=AC×AD

求证:AB是圆的切线

证明:过点B作圆的切线,交DC于A1,

1

则∠CBA1=∠D

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com