haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

初二数学竞赛辅导资料(15)10788

发布时间:2013-11-29 09:24:03  

24、问渠那得清如许,为有源头活水来——朱熹
初二数学竞赛辅导资料(15)
勾股定理
内容提要
1.勾股定理及逆定理:△ABC中 ∠C=Rt∠a2+b2=c2
2.勾股定理及逆定理的应用
① 作已知线段a的,, ......倍
② 计算图形的长度,面积,并用计算方法解几何题
③ 证明线段的平方关系等.
3.勾股数的定义:如果三个正整数a,b,c满足等式a2+b2=c2,那么这三个正整数a,b,c叫做一组勾股数.
4.勾股数的推算公式
④ 罗士琳法则(罗士琳是我国清代的数学家1789――1853)
任取两个正整数m和n(m>n),那么m2-n2,2mn, m2+n2是一组勾股数.
⑤ 如果k是大于1的奇数,那么k, ,是一组勾股数.
⑥ 如果k是大于2的偶数,那么k, ,是一组勾股数.
⑦ 如果a,b,c是勾股数,那么na, nb, nc (n是正整数)也是勾股数.
5.熟悉勾股数可提高计算速度,顺利地判定直角三角形.简单的勾股数有:3,4,5; 5,12,13; 7,24,25; 8,15,17; 9,40,41.
例题
例1.已知线段a   a     a   2a   3a a                  
求作线段a             a         
分析一:a== 2a                      
∴a是以2a和a为两条直角边的直角三角形的斜边.
分析二:a=

∴a是以3a为斜边,以2a为直角边的直角三角形的另一条直角边.
作图(略)
例2.四边形ABCD中∠DAB=60,∠B=∠D=Rt∠,BC=1,CD=2
求对角线AC的长                   
解:延长BC和AD相交于E,则∠E=30                     
∴CE=2CD=4,                                 
在Rt△ABE中                             
设AB为x,则AE=2x                            
根据勾股定理x2+52=(2x)2, x2=             
在Rt△ABC中,AC===
例3.已知△ABC中,AB=AC,∠B=2∠A
求证:AB2-BC2=AB×BC                  
证明:作∠B的平分线交AC于D,            
 则∠A=∠ABD,                      
∠BDC=2∠A=∠C
∴AD=BD=BC                              
作BM⊥AC于M,则CM=DM                 
AB2-BC2=(BM2+AM2)-(BM2+CM2)            
    =AM2-CM2=(AM+CM)(AM-CM

)         
    =AC×AD=AB×BC
例4.如图已知△ABC中,AD⊥BC,AB+CD=AC+BD
 求证:AB=AC                 
 证明:设AB,AC,BD,CD分别为b,c,m,n                          
    则c+n=b+m, c-b=m-n                     
    ∵AD⊥BC,根据勾股定理,得                       
     AD2=c2-m2=b2-n2                                                                
    ∴c2-b2=m2-n2, (c+b)(c-b)=(m+n)(m-n)
     (c+b)(c-b) =(m+n)((c-b)                           
     (c+b)(c-b) -(m+n)(c-b)=0
     (c-b){(c+b)-(m+n)}=0
     ∵c+b>m+n, ∴c-b=0 即c=b
     ∴AB=AC
例5.已知梯形ABCD中,AB∥CD,AD>BC
  求证:AC>BD
  证明:作DE∥AC,DF∥BC,交BA或延长线于点E、F
  ACDE和BCDF都是平行四边形
  ∴DE=AC,DF=BC,AE=CD=BF                    
  作DH⊥AB于H,根据勾股定理                            
  AH=,FH=                       
  ∵AD>BC,AD>DF                               
  ∴AH>FH,EH>BH             
  DE=,BD=
  ∴DE>BD
  即AC>BD
例6.已知:正方形ABCD的边长为1,正方形EFGH内接于ABCD,AE=a,AF=b,且SEFGH=
  求:的值
(2001年希望杯数学邀请赛,初二)
解:根据勾股定理    
 a2+b2=EF2=SEFGH= ;① 
∵4S△AEF=SABCD-SEFGH  ∴ 2ab=   ②
① -②得 (a-b)2=    ∴=
练习
1. 以下列数字为一边,写出一组勾股数:
① 7,__,__  ②8,__,__  ③9,__,__
④10,__,__  ⑤11,__,__  ⑥12,__,__
2. 根据勾股数的规律直接写出下列各式的值:
① 252-242=__,   ②52+122=__,
③=___,④=___
3. △ABC中,AB=25,BC=20,CA=15,CM和CH分别是中线和高.那么S△ABC=__,CH=__,MH=___
4. 梯形两底长分别是3和7,两对角线长分别是6和8,则S梯形=___
5.已知:△ABC中,AD是高,BE⊥AB,BE=CD,CF⊥AC,CF=BD
求证:AE=AF
6.已知:M是△ABC内的一点,MD⊥BC,ME⊥AC,MF⊥AB,
 且BD=BF,CD=CE  

                   
  求证:AE=AF        
                                                 
                                                
                  
                          

7.在△ABC中,∠C是钝角,a2-b2=bc  求证∠A=2∠B
8.求证每一组勾股数中至少有一个数是偶数.(用反证法)
9.已知直角三角形三边长均为整数,且周长和面积的数值相等,求各边长
10等腰直角三角形ABC斜边上一点P,求证:AP2+BP2=2CP2
11.已知△ABC中,∠A=Rt∠,M是BC的中点,E,F分别在AB,AC
ME⊥MF
求证:EF2=BE2+CF2
12.Rt△ABC中,∠ABC=90,∠C=60,BC=2,D是AC的中点,从D作DE⊥AC与CB的延长线交于点E,以AB、BE为邻边作矩形ABEF,连结DF,则DF的长是____.(2002年希望杯数学邀请赛,初二试题)
                                   
                
 
 
 
 
 
13.△ABC中,AB=AC=2,BC边上有100个不同的点p1,p2,p3,...p100,
记mi=APi2+BPi×PiC (I=1,2......,100),则m1+m2+...+m100=____
  (1990年全国初中数学联赛题)

??

??

??

??








24、问渠那得清如许,为有源头活水来——朱熹

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com