haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

小学奥数六年级举一反三36-40

发布时间:2013-11-29 12:29:00  

第三十六周 流水行船问题

专题简析:

当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。当顺风时,借着风力,相对而言用里较少。在你的生活中是否也遇到过类似的如流水行船问题。

解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。

划速=(顺流船速+逆流船速)÷2;

水速=(顺流船速—逆流船速)÷2;

顺流船速=划速+水速;

逆流船速=划速—水速;

顺流船速=逆流船速+水速×2;

逆流船速=逆流船速—水速×2。

例题1:

一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。

在这个问题中,不论船是逆水航行,还是顺水航行,其行驶的路程相等,都等于A、B两地之间的路程;而船顺水航行时,其形式的速度为船在静水中的速度加上水流速度,而船在怒水航行时的行驶速度是船在静水中的速度与水流速度的差。

解:设水流速度为每小时x千米,则船由A地到B地行驶的路程为[(20+x)×6]千米,船由B地到A地行驶的路程为[(20—x)×6×1.5]千米。列方程为

(20+x)×6=(20—x)×6×1.5

x=4 答:水流速度为每小时4千米。

练习1:

1、水流速度是每小时15千米。现在有船顺水而行,8小时行320千米。若逆水行320千米需几小时?

2、水流速度每小时5千米。现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?

13、一船从A地顺流到B地,航行速度是每小时32千米,水流速度是每小时4千米,2天可以到达。次船从B2

地返回到A地需多少小时?

例题2:

有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。列式为

逆流速:120÷10=12(千米/时) 顺流速:120÷6=12(千米/时)

船速:(20+12)÷2=16(千米/时)

水速:(20—12)÷2=4(千米/时) 答:船速是每小时行16千米,水速是每小时行4千米。 练习2:

1、有只大木船在长江中航行。逆流而上5小时行5千米,顺流而下1小时行5千米。求这只木船每小时划船速度和河水的流速各是多少?

2、有一船完成360千米的水程运输任务。顺流而下30小时到达,但逆流而上则需60小时。求河水流速和静水中划行的速度?

3、一海轮在海中航行。顺风每小时行45千米,逆风每小时行31千米。求这艘海轮每小时的划速和风速各是多少? 例题3:

轮船以同一速度往返于两码头之间。它顺流而下,行了8小时;逆流而上,行了10小时。如果水流速度是每小时3千米,求两码头之间的距离。

在同一线段图上做下列游动性示意图36-1演示:

顺流

逆流

10图36——1

因为水流速度是每小时3千米,所以顺流比逆流每小时快6千米。如果怒六时也行8小时,则只能到A地。那么

A、B的距离就是顺流比逆流8小时多行的航程,即6×8=48千米。而这段航程又正好是逆流2小时所行的。由此得出逆流时的速度。列算式为

(3+3)×8÷(10—8)×10=240(千米)

答:两码头之间相距240千米。

练习3:

1、一走轮船以同样的速度往返于甲、乙两个港口,它顺流而下行了7小时,逆流而上行了10小时。如果水流速度是每小时3.6千米,求甲、乙两个港口之间的距离。

2、一艘渔船顺水每小时行18千米,逆水每小时行15千米。求船速和水速各是多少?

3、沿河有上、下两个市镇,相距85千米。有一只船往返两市镇之间,船的速度是每小时18.5千米,水流速度每小时1.5千米。求往返依次所需的时间。

例题4:

汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?

依据船逆流在176千米的河中所需航行时间是11小时,可以求出逆流的速度。返回原地是顺流而行,用行驶路程除以顺流速度,可求出返回所需的时间。

逆流速:176÷11=16(千米/时)

所需时间:176÷[30+(30—16)]=4(小时)

答:返回原地需4小时。

练习4:

1、当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。返回时水流速度是逆流而上的2倍。需几小时行195千米?

2、已知一船自上游向下游航行,经9小时后,已行673千米,此船每小时的划速是47千米。求此河的水速是多少?

3、一只小船在河中逆流航行3小时行3千米,顺流航行1小时行3千米。求这只船每小时的速度和河流的速度各是多少?

例题5:

有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。甲船行4小时后与漂流物相距100千米,乙船行12小时后与漂流物相遇,两船的划速相同,河长多少千米?

漂流物和水同速,甲船是划速和水速的和,甲船4小时后,距漂流物100千米,即每小时行100÷4=25(千米)。乙船12小时后与漂流物相遇,所受的阻力和漂流物的速度等于划速。这样,即可算出河长。列算式为

船速:100÷4=25(千米/时)

河长:25×12=300(千米) 答:河长300千米。

练习5:

1、有两只木排,甲木排和漂流物同时由A地向B地前行,乙木排也同时从B地向A地前行,甲木排5小时后与漂流物相距75千米,乙木排行15小时后与漂流物相遇,两木排的划速相同,A、B两地长多少千米?

2、有一条河在降雨后,每小时水的流速在中流和沿岸不同。中流每小时59千米,沿岸每小时45千米。有一汽船逆流而上,从沿岸航行15小时走完570千米的路程,回来时几小时走完中流的全程?

3、有一架飞机顺风而行4小时飞360千米。今出发至某地顺风去,逆风会,返回的时间比去的时间多3小时。已知逆风速为75千米/小时,求距目的地多少千米?

第三十七周 对策问题

专题简析:

同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。 生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

例题1:

两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。挨到谁移走最后一根火柴就算谁输。如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。甲要取胜只要取走第999根火柴。因此,只要取到第991根就可以了(如乙取

1根甲就取7根;如乙取2根甲就取6根。依次类推,甲取的与乙取的之和为8根火柴)。由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:

1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。每人每次可以拿1至3根,不许不拿,乙让甲先拿。问:谁能一定取胜?他要取胜应采取什么策略?

2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。问:先报数者有必胜的策略吗?

3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。先移者确保获胜的方法是什么?

例题2:

有1987粒棋子。甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。现在两人通过抽签决定谁先取。你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?

从结局开始,倒推上去。不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。如果剩下5粒棋子,则甲不能一次拿完,乙胜。因此甲想取胜,只要在某一时刻留下5粒棋子就行了。不妨设甲先取,则甲能取胜。甲第一次取2粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于5,这样,每一轮后,剩下的棋子粒数总是5的倍数,最后总能留下5粒棋子,因此,甲先取必胜。

练习2:

1、甲、乙两人轮流从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?

2、有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。甲有获胜的可能吗?取胜的策略是什么?

3、盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,先名先、小红后,谁胜?取胜的策略是什么?

例题3:

在黑板上写有999个数:2,3,4,……,1000。甲、乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜。谁必胜?必胜的策略是什么?

甲先擦去1000,剩下的998个数,分为499个数对:(2,3),(4,5),(6,7),……(998,999)。可见每一对数中的两个数互质。如果乙擦去某一对中的一个,甲则接着擦去这对中的另一个,这样乙、甲轮流去擦,总是一对数、一对数地擦,最后剩下的一对数必互质。所以,甲必胜。

练习3:

1、甲、乙两人轮流从分别写有1,2,3,……,99的99张卡片中任意取走一张,先取卡的人能否保证在他取走的第97张卡片时,使剩下的两张卡片上的数一个是奇数,一个是偶数?

2、两个人进行如下游戏,即两个人轮流从数列1,2,3,……,100,101勾去九个数。经过这样的11次删除后,还剩下两个数。如果这两个数的差是55,这时判第一个勾数的人获胜。问第一个勾数的人能否获胜?获胜的策略是什么?

3、在黑板上写n—1(n>3)个数:2,3,4,??,n。甲、乙两人轮流在黑板上擦去一个数。如果最后剩下的两个数互质,则乙胜,否则甲胜。N分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么? 例题4:

甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在黑板上写已写过的数的约数,最后不能写的人为失败者。如果甲第一个写,谁一定获胜?写出一种获胜的方法。

这里关键是第一次写什么数,总共只有10个数,可通过归纳试验。

甲不能写1,否则乙写6,乙可获胜;甲不能写3,5,7,否则乙写8,乙可获胜;甲不能写4,9,10,否则乙写6,乙可获胜。因此,甲先写6或8,才有可能获胜。

甲可以获胜。如甲写6,去掉6的约数1,2,3,6,乙只能写4,5,7,8,9,10这六个数中的一个,将这六个数分成(4,5),(7,9),(8,10)三组,当乙写某组中的一个数,甲就写另一个数,甲就能获胜。

练习4:

1、甲、乙两人轮流在黑板上写上不超过14的自然数。书写规则是:不允许写黑板上已写过的数的约数,轮到书写人无法再写时就是输者。现甲先写,乙后写,谁能获胜?应采取什么对策?

2、甲、乙两人轮流从分别写有3,4,5,……,11的9张卡片中任意取走一张,规定取卡人不能取已取过的数的倍数,轮到谁无法再取时,谁就输。现甲先取,乙后取,甲能否必然获绳?应采取的对策是什么?

3、甲、乙两人轮流在2004粒棋子中取走1粒,3粒,5粒或7粒棋子。甲先取,乙后取,取到最后一粒棋子者

为胜者。甲、乙两人谁能获胜?

例题5:

有一个3×3的棋盘以及9张大小为一个方格的卡片如图37-1所示,9张卡片分别写有:1,3,4,5,6,7,8,9,10这几个数。小兵和小强两人做游戏,轮流取一张卡片放在9格中的一格,小兵计算上、下两行6个数的和;小强计算左、右两列6个数的和,和数大的一方取胜。小兵一定能取胜吗?

如图37-1所示,由于4个角的数是两人共有的,因而和数的大小只与放在A,B,C,D这4个格中的数有关。 小兵要获胜,必须采取如下策略,尽可能把大数填入A或C格,尽可能将小数填入B格或D格。

由于1+10<3+9,即B+D<A+C,小兵应先将1放在B格,如小强把10放进D格,小兵再把9放进A格,这时不论小强怎么做,C格中一定是大于或等于3的数,因而小兵获胜。如小强把3放进A格,小兵只需将9放到C格,小兵也一定获胜。

练习5:

1、在5×5的棋盘的右上角放一枚棋子,每一步只能向左、想下或向左下对角线走一格。两人交替走,谁为胜者。必胜的策略是什么?

2、甲、乙两人轮流往一个圆桌面上放同样大小的硬币,规则是每人每次只能放一枚,硬币不能重叠,谁放完最后一枚硬币而使对方再无处可放,谁就获胜。如果甲先放,那么他怎样才能取胜?

3、两人轮流在3×3的方格中画“√”和“×”,规定每人每次至少画一格,至多画三格,所有的格画满后,谁画的符号总数为偶数,谁就获胜。谁有获胜的策略?

第三十八周 应用同余问题

专题简析:

同余这个概念最初是由伟大的德国数学家高斯发现的。同余的定义是这样的:

两个整数a,b,如果它们除以同一自然数m所得的余数想同,则称a,b对于模m同余。记作:a≡b(mod m)。读做:a同余于b模m。比如,12除以5,47除以5,它们有相同的余数2,这时我们就说,对于除数5,12和47同余,记做12≡47(mod 5)。

同余的性质比较多,主要有以下一些:

性质(1):对于同一个出书,两个数之和(或差)与它们的余数之和(或差)同余。比如:32除以5余数是2,19除以5余数是4,两个余数的和是2+4=6。“32+19”除以5的余数就恰好等于它们的余数和6除以5的余数。也就是说,对于除数5,“32+19”与它们的余数和“2+4”同余,用符号表示就是:32≡2(mod 5),19≡4(mod

5),32+19≡2+4≡1(mod 5)

性质(2):对于同意个除数,两个数的乘积与它们余数的乘积同余。

性质(3):对于同意个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。

性质(4):对于同意个除数,如果两个整数同余,那么它们的乘方仍然同余。

应用同余性质几萼体的关键是要在正确理解的基础上灵活运用同余性质。把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单,使困难的题变容易。

例题1:

求1992×59除以7的余数。

应用同余性质(2)可将1992×59转化为求1992除以7和59除以7的余数的乘积,使计算简化。1992除以7余4,59除以7余3。根据同余性质,“4×3”除以7的余数与“1992×59”除以7的余数应该是相同的,通过求“4×3”除以7的余数就可知道1992×59除以7的余数了。

因为1992×59≡4×3≡5(mod 7)

所以1992×59除以7的余数是5。

练习1:

1、求4217×364除以6的余数。

2、求1339655×12除以13的余数。

3、求879×4376×5283除以11的余数。

例题2:

已知2001年的国庆节是星期一,求2010年的国庆节是星期几?

一星期有7天,要求2010年的国庆节是星期几,就要求从2001年到2010年的国庆节的总天数被7除的余数就行了。但在甲酸中,如果我们能充分利用同余性质,就可以不必算出这个总天数。

2001年国庆节到2010年国庆节之间共有2个闰年7个平年,即有“366×2+365×7”天。因为366×2≡2×2≡4(mod 7),365×7≡1×7≡0(mod 7),366×2+365×7≡2×2+1×7≡4+0≡4(mod 7)

答:2010年的国庆节是星期五。

练习2:

1、已知2002年元旦是星期二。求2008年元旦是星期几?

2、已知2002年的“七月一日”是星期一。求2015年的“十月一日”是星期几?

3、今天是星期四,再过365的15次方是星期几?

例题3:

求2001的2003次方除以13的余数。

2001除以13余12,即2001≡12(mod 13)。根据同余性质(4),可知2001的2003次方≡12的2003次方(mod

13),但12的2003次方仍然是一个很大的值,要求它的余数比较困难。这时的关键就是要找出12的几次方对模13与1是同余的。经试验可知12的平方≡1(mod 13),而2003≡2×1001+1。所以(12的平方)的1001次方≡1的1001(mod 13),即12的2002次方≡1(mod 13),而12的2003次方≡12的2002次方×12。根据同余性质

(2)可知12的2002次方×12≡1×12≡12(mod 13)

因为:2001的2003次方≡12的2003次方(mod 13)

12的平方≡1(mod 13),而2003≡2×1001+1

12的2003次方≡12的2002次方×12≡1×12≡12(mod 13)

所以2001的2003次方除以13的余数是12。

练习3:

1、求12的200次方除以13的余数。

2、求3的92次方除以21余几。

3、9个小朋友坐成一圈,要把35的7次方粒瓜子平均分给他们,最后剩下几粒?

例题4:

自然数16520,14903,14177除以m的余数相同,m最大是多少?

自然数16520,14903,14177除以m的余数相同,换句话说就是16520≡14903≡14177(mod m)。根据同余性质

(3),这三个饿数同余,那么它们的差就能被m整除。要求m最大是多少,就是求它们差的最大公约数是多少? 因为16520—14903=1617=3×7的平方×11

16520—14177=2343=3×11×71

14903—14177=726=2×3×11的平方

M是这些差的公约数,m最大是3×11=33。

练习4:

1、若2836、4582、5164、6522四个整数都被同一个两位数相除,所得的余数相同。除数是多少?

2、一个整数除226、192、141都得到相同的余数,且余数不为0,这个整数是几?

3、当1991和1769除以某一个自然数m时,余数分别为2和1,那么m最小是多少?

例题5:

某数用6除余3,用7除余5,用8除余1,这个数最小是几?

我们可从较大的除数开始尝试。首先考虑与1模8同余的数,9≡1(mod 8),但9输以7余数不是5,所以某数不是9。17≡1(mod 8),17除以7的余数也不是5。25≡1(mod 8),25除以7的余数也不是5。33≡1(mod 8),33除以7的余数正好是5,而且33除以6余数正好是3,所以这个数最小是33。上面的方法实际是一种列举法,也可以简化为下面的格式:

被8除余1的数有:9,17,25,33,41,49,57,65,73,81,89,??其中被7除余5的数有:33,89,??这些数中被6除余3的数最小是33。

练习5:

1、某数除以7余1,除以5余1,除以12余9。这个数最小是几?

2、某数除以7余6,除以5余1,除以11余3,求此数最小值。

3、在一个圆圈上有几十个孔(如图38-1),小明像玩跳棋那样从A孔出发沿逆时针方向每隔几个孔跳一步,希望一圈以后能跑回A孔,他先试着每隔2孔跳一步,也只能跳到B孔。最后他每隔6孔跳一步,正好跳回A孔。问:这个圆圈上共有多少个孔?

第三十九周 “牛吃草”问题

专题简析:

牛吃草问题是牛顿问题,因牛顿提出而得名的。“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3×10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。因为草每天走在生长,草的数量在不断变化。这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。

解答这类题的关键是要想办法从变化中找到不变的量。牧场上原有的草是不变的,新长出的草虽然在变化,因为

是匀速生长,所以每天新长出的草是不变的。正确计算草地上原有的草及每天长出的草,问题就容易解决了。 例1

一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?

这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量。因为总草量可以分成两部分:原有的草与新长出的草。新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。

假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完。而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份)。这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72÷(21-15)=12(周)

练习1

1、 一片草地,每天都匀速长出青草,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃几天?

2、 牧场上一片草地,每天牧草都匀速生长,这片牧草可供10头牛吃20天,或者可供15头牛吃10天,问可供25头牛吃几天?

3、 牧场上的青草每天都在匀速生长,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?

例2:

由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天。照此计算,可供多少头牛吃10天?

与例1不同的是,不仅没有新长出的草,而且原有的草还在减少,但是,我们同样可以利用与例1类似的方法求出每天减少的草和原来的草的总量。

设1头牛1天吃的草为1份,20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷的天气使牧场1天减少青草10份,也就是寒冷导致的每天减少的草量相当于10头牛在吃草。由“草地上的草可供20头牛吃5天”,再加上寒冷导致的每天减少的草量相当于10头牛同时在吃草,所以原有草两有(20+10)×5=150(份),由150÷10=15知道,牧场原有的草可供15头牛吃10天。由寒冷导致的原因占去10头牛吃的草,所以可供5头牛吃10天。

练习2:

1、 由于天气逐渐冷起来,牧场上的草每天以均匀的速度在减少。经计算,牧场上的草可供20头牛吃5天或可供16头牛吃6天。那么,可供11头牛吃几天?

2、 由于天气逐渐冷起来,牧场上的草以固定速度在减少。已知牧场上的草可供33头牛吃5天或可供24头牛吃6天。照此计算,这个牧场可供多少头牛吃10天?

3、 经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年。假设地球新生成的资源增长速度是一样的,那么,为满足人类不断发展的需要,地球最多能养活多少亿人?

例3:

自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?

与前两个题比较,“总的草量”变成了“扶梯的台阶总数”,“草”变成了“台阶”,“牛”变成了“速度”,也可以看成是牛吃草问题。

上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100—90=10(级),多用了6—5=1(分钟),说明电梯1分钟走10级。因男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和。所以,扶梯共有(20+10)×5=150(级)

练习3:

1、自动扶梯以均匀速度行驶着,渺小明和小红从扶梯上楼。已知小明每分钟走25级台阶,小红 每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。该扶梯共有多少级台阶?

2、两个顽皮的孩子逆着自动扶梯的方向行走。在20秒钟里,男孩可走27级台阶,女孩可走24级台阶,男孩走了2分钟到达另一端,女孩走了3分钟到达另一端,该扶梯共有多少级台阶?

3、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。白天往下爬,两只蜗牛白天爬行的速度是不同的。一只每天白天爬20分米,另一只爬15分米。黑夜里往下滑,两只蜗牛滑行的速度却是相同的。结果一只蜗牛恰好用了5个昼夜到达井底,另一只蜗牛恰好用了6个昼夜到达井底。那么,井深多少米?

例题4:

一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水。如果用12人舀水,3小时舀完。如果只有5个人舀水,要10小时才能舀完。现在要想2小时舀完,需要多少人?

已漏进的水,加上3小时漏进的水,每小时需要(12×3)人舀完,也就是36人用1小时才能舀完。已漏进的水,加上10小时漏进的水,每小时需要(5×10)人舀完,也就是50人用1小时才能舀完。通过比较,我们可以得出1小时内漏进的水及船中已漏进的水。

1小时漏进的水,2个人用1小时能舀完:

(5×10—12×3)÷(10—3)=2

已漏进的水:(12—2)×3=30

已漏进的水加上2小时漏进的水,需34人1小时完成:

30+2×2=34

用2小时来舀完这些水需要17人:34÷2=17(人)

练习4:

1、有一水池,池底有泉水不断涌出。用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?

2、有一个长方形的水箱,上面有一个注水孔,底面有一个出水孔,两孔同时打开后,如果每小时注水30立方分米,7小时可以注满水箱;如果每小时注水45立方分米,注满水箱可少用2.5小时。那么每小时由底面小孔排出多少立方分米的水(设每小时排水量相同)?

3、有一水井,连续不段涌出泉水,每分钟涌出的水量相等。如果用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机,20分钟抽完。现在12分钟内要抽完井水,需要抽水机多少台?

例题5:

有三块草地,面积分别为5,6,和8公顷。草地上的草一样厚,而且长得一样快。第一块草荐地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块草地可供19头牛吃多少天?

前几天我们接触的是在同一块草地上,同一个水池中,现在是三块面积不同的草地。为了解决这个问题,只需将三块草地的面积统一起来。即

[5,6,8]=120

这样,第一块5公顷可供11头牛吃10天,120÷5=24,变为120公顷草地可供11×24=264(头)牛吃10天 第二块6公顷可供12头牛吃14天,120÷6=20,变为120公顷草地可供12×20=240(头)牛吃14天。 120÷8=15。问题变成:120公顷草地可供19×15=285(头)牛吃几天?

因为草地面积相同,可忽略具体公顷数,原题可变为:

一块草地匀速生长,可供264头牛吃10天或供240头牛吃14天, 那么可供285头牛齿及天?即

每天新长出的草:(240×14—264×10)÷(14—10)=180(份)

草地原有草:(264—180)×10=840(份)

可供285头牛吃的时间:840÷(285—180)=8(天)

答:第三块草地可供19头牛吃8天。

练习5:

1、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需多少分钟?

2、快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是嵋小时24千米、20千米、19千米。快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?

3、一个牧场上的青草每天都匀速生长。这片青草可供17头牛吃30天,或供19头牛吃24天。现有一群牛吃了6天后卖掉4头,余下的牛又吃了2天将草吃完。这群牛原来有多少头?

第四十周 不定方程

专题简析:

当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。如5x-3y=9就是不定方程。这种方程的解是不确定的。如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。如5x-3y=9的解有:

x= 2.4 x= 2.7 x= x= 3.6

………

y= 1 y= 1.5 y= 2.1 y= 3

x、y5x=3,Y=2这一组了。因此,研究不定方程主要就是分

析讨论这些限制条件对解的影响。

解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。

对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。

解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。

例1.

求3x+4y=23的自然数解。

先将原方程变形,y=

23-3x。可列表试验求解:

4所以方程3x+4y=23的自然数解为

x=5

y=2

练习一

1、 求3x+2y=25的自然数解。

2、 求4x+5y=37的自然数解。

3、 求5x-3y=16的最小自然数解。

例2

求下列方程组的正整数解。

5x+7y+3z=25

3x-y-6z=2

这是一个三元一次不定方程组。解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。

5x+7y+3z=25 ①

3x-y-6z=2 ②

由①×2+②,得13x+13y=52

X+y=4 ③

把③式变形,得y=4-x。

因为x、y、z都是正整数,所以x只能取1、2、3.

当x=1时,y=3

当x=2时,y=2

当x=3时,y=1

把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。

x=2,y=2时,z也无正整数解。

x=3时,y=1时,z=1.

所以,原方程组的正整数解为 x=1

y=1

z=1

练习2

求下面方程组的自然数解。

1 4x+3y-2z=7 2 7x+9y+11z=68

3x+2y+4z=21 5x+7y+9z=52

4、 =26

-y-6z=2

例3

一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。如果弹子数为99,盒子数大于9,问两种盒子各有多少个?

两种盒子的个数都应该是自然数,所以要根据题意列出不定方程,再求出它的自然数解。

设大盒子有x个,小盒子有y个,则 12x+5y=99(x>0,y>0,x+y>9) y=(99-12y)÷5

经检验,符合条件的解有:=2 x=7 y=15 y=3

所以,大盒子有215个,或大盒子有7个,小盒子有3个。 练习3.

1、 某校6(1)班学生48人到公园划船。如果每只小船可坐3人,每只大船可坐5人。那么需要小船和大船各几只?(大、小船都有)

2、 甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种不同的铅笔共几枝? 3、 小华和小强各用6角4分买了若干枝铅笔,他们买来的铅笔中都是5分一枝和7分一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝? 例题4

买三种水果30千克,共用去80元。其中苹果每千克4元,橘子每千克3元,梨每千克2元。问三种水果各买了多少千克?

设苹果买了x千克,橘子买了y千克,梨买了(30-x-y)千克。根据题意得: 4x+3y+2×(30-x-y)=82 y

x=10-

2

由式子可知:y<20,则y必须是2的倍数,所以y可取2、4、6、8、10、12、14、16、18。因此,原方程的解如下表:

练习4

1、 有红、黄、蓝三种颜色的皮球共26只,其中蓝皮球的只数是黄皮球的9倍,蓝皮球有多少只?

2、 用10元钱买25枝笔。已知毛笔每枝2角,彩色笔每枝4角,钢笔每枝9角。问每种笔各买几枝?(每种都要买) 3、 晓敏在文具店买了三种贴纸;普通贴纸每张8分,荧光纸每张1角,高级纸每张2角。她一共用了一元两角两分钱。那么,晓敏的三种贴纸的总数最少是多少张? 例5

某次数学竞赛准备例2枝铅笔作为奖品发给获得一、二、三等奖的学生。原计划一等奖每人发6枝,二等奖每人发3枝,三等奖每人发2枝。后又改为一等奖每人发9枝,二等奖每人发4枝,三等奖每人发1枝。问:一、二、三等奖的学生各有几人?

设一等奖有x人,二等奖有y人,三等奖有z人。则 6x+3y+2z=22 ①

9x+4y+z=22 ② 由②×2-①,得12x+5y=22 y =

22-12x

x=1 5

x只能取1。Y=2,代入①得z=5,原方程的解为 y=2 z=5

所以,一等奖的学生有1人,二等奖的学生有2人,三等奖的学生有5人。 练习5

1、 某人打靶,8发打了53环,全部命中在10环、7环和5环。他命中10环、7环和5环各几发?

2、 篮子里有煮蛋、茶叶蛋和皮蛋30个,价值24元。已知煮蛋每个0.60元,茶叶蛋每个1元,皮蛋每个1.20元。问篮子里最多有几个皮蛋?

111

3、 一头猪卖3个银币,一头山羊卖1个银币,个银币。有人用100个银币卖了这三种牲畜100

232头。问猪、山羊、绵羊各几头?

答案:

练1

1、 x=

1 x=3 x=5 x=7

y=11 y=8 y=5 y=2

2、 x=3 x=8

y=11 y=1

4、 x=5

y=3

练2

1、 x=1

y=3

z=3

2 x=3 x=4

y=4 y=2

z=1 z=2

3 x=3

y=1

z=1

练3

1、 设需要小船x只,大船y只。则3x+5y=48,y=

方程的解是 x=1 x=6 x=11

=9 y=6 y=3

2、 设买甲级笔x枝,乙级笔y枝,则7x+3y=60,y=60-7x。x≤ 348-3x根据题意,x可取1、6、11, 5

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com