haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

备战2014年数学中考————初中数学竞赛辅导讲义及习题解答 第22讲 园幂定理

发布时间:2013-12-06 09:05:07  

第二十二讲 园幂定理

相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.

相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:

1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;

2.从定理的证明方法看,都是由一对相似三角形得到的等积式.

熟悉以下基本图形、基本结论:

【例题求解】

【例1】 如图,PT切⊙O于点T,PA交⊙O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则.

思路点拨 综合运用圆幂定理、勾股定理求PB长.

注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:

(1)平行线分线段对应成比例;

(2)相似三角形对应边成比例;

(3)直角三角形中的比例线段可以用积的形式简捷地表示出来;

(4)圆中的比例线段通过圆幂定理明快地反映出来.

【例2】 如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于点E,且与CD相切,若AB=4,BE=5,则DE的长为( )

A.3 B.4 C.1516 D. 45

思路点拨 连AC,CE,由条件可得许多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.

【例3】 如图,△ABC内接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠

B.

(1)求证:PA是⊙O的切线;

(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值.

思路点拨 直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的方程.

【例4】 如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE

思路点拨 由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.

注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.

需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.

【例5】 如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.

求:(1)cos∠F的值;(2)BE的长.

思路点拨 解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.

注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:

(1)多视点观察图形.如本例从D点看可用切线长定理,从F点看可用切割线定理.

(2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.

(3)将以上分析组合,寻找联系.

学力训练

1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为 .

2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:

3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE= .

4.如图,在△ABC中,∠C=90°,AB=10,AC=6,以AC为直径作圆与斜边交于点P,则BP的长为( )

A.6.4 B.3.2 C .3.6 D.8

5.如图,⊙O的弦AB平分半径OC,交OC于P点,已知PA、PB的长分别为方程x2?12x?24?0的两根,则此圆的直径为( )

A.82 B.62 C.42 D.22

⌒ 6.如图,⊙O的直径Ab垂直于弦CD,垂足为H,点P是AC上一点(点P不与A、C两点 重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F,给出下列四⌒ ⌒

个结论:①CH2=AH·BH;②AD=AC:③AD2=DF·DP;④∠EPC=∠APD,其中正确的

个数是( )

A.1 B.2 C.3 D.4

7.如图,BC是半圆的直径,O为圆心,P是BC延长线上一点,PA切半圆于点A,AD⊥BC于点D.

(1)若∠B=30°,问AB与AP是否相等?请说明理由;

(2)求证:PD·PO=PC·PB;

(3)若BD:DC=4:l,且BC=10,求PC的长.

8.如图,已知PA切⊙O于点A,割线PBC交⊙O于点B、C,PD⊥AB于点D,PD、AO的延长线相交于点E,连CE并延长交⊙O于点F,连AF.

(1)求证:△PBD∽△PEC;

(2)若AB=12,tan∠EAF=2,求⊙O的半径的长. 3

9.如图,已知AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰哈好是关于x的方程x2?6x?(m2?4m?13)?0 (其中m为实数)的两根.

(1)求证:BE=BD;(2)若GE·EF=6,求∠A的度数.

10.如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC= .

11.如图,已知A、B、C、D在同一个圆上,BC=CD,AC与BD交于E,若AC=8,CD=4,且线段BE、ED为正整数,则BD= .

12.如图,P是半圆O的直径BC延长线上一点,PA切半圆于点A,AH⊥BC于H,若PA=1,PB+PC=a(a>2),则PH=( )

A.a21a B. C. D. 2aa3

13.如图,△ABC是⊙O的内接正三角形,弦EF经过BC的中点D,且EF∥AB,若AB=2,则DE的长为( )

?131 B. C. D.1 222

14.如图,已知AB为⊙O的直径,C为⊙O上一点,延长BC至D,使CD=BC,CE⊥ADA.于E,B

E交⊙O于F,AF交CE于P,求证:PE=PC.

15.已知:如图,ABCD为正方形,以D点为圆心,AD为半径的圆弧与以BC为直径的⊙O相交于P、C两点,连结AC、AP、CP,并延长CP、AP分别交AB、BC、⊙O于E、H、F三点,连结OF.

(1)求证:△AEP∽△CEA;(2)判断线段AB与OF的位置关系,并证明你的结论;

(3)求BH:HC

16.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.

17.如图,⊙O的直径的长是关于x的二次方程x2?2(k?2)x?k?0(k是整数)的最大整数根,P是⊙O外一点,过点P作⊙O 的切线PA和割线PBC,其中A为切点,点B、C是直线PBC与⊙O的交点,若PA、PB、PC的长都是正整数,且PB的长不是合数,求PA+PB+PC 的值.

参考答案

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com