haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

小学数学之方阵问题

发布时间:2013-12-09 09:30:14  

小学数学之方阵问题

学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方公式)。 核心公式:

1、方阵总人数=最外层每边人数的平方(方阵问题的核心)

2、方阵最外层每边人数=(方阵最外层总人数/4)+1

3、方阵外一层总人数比内一层总人数多2

4、去掉一行、一列总人数比内一层总人数多2

例1 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?

A.256人 B.250人 C.225人 D.196人

解析:方阵问题的核心是求最外层每边人数。

根据四周人数和每边人数的关系可以知:

每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。

方阵最外层每边人数:60÷4+1=16(人)

整个方阵共有学生人数:16×16=256(人)。

所以,正确答案为A。

例2 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?

分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:

去掉一行、一列的总人数=去掉的每边人数×2-1

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

解析:方阵问题的核心是求最外层每边人数。

原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17

方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人) 例3 小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用

5枚硬币,则小红所有五分硬币的总价值是:

A.1元 B.2元 C.3元 D.4元

解析:设当围成一个正方形时,每边有硬币X枚,此时总的硬币枚数为4(X-1),当变成三角形时,则此时的硬币枚数为3(X+5-1),由此可列方和为 4(X-1)=3(X+5-1)解得

X=16 总的硬币枚数为60,则总价值为3元。

所以,正确答案为C。

5、某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少?

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com